柱,錐,臺(tái),球的表面積與體積_第1頁
柱,錐,臺(tái),球的表面積與體積_第2頁
柱,錐,臺(tái),球的表面積與體積_第3頁
柱,錐,臺(tái),球的表面積與體積_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、.柱,錐,臺(tái),球的外表積與體積【知識(shí)概述】空間幾何體的外表積、體積是高考的必考知識(shí)點(diǎn)之一題型既有選擇題、填空題,又有解答題,難度為中、低檔客觀題主要考察由三視圖得出幾何體的直觀圖,求其外表積、體積或由幾何體的外表積、體積得出某些量;主觀題考察比較全面,其中一步往往設(shè)置為外表積、體積問題,無論是何種題型都考察學(xué)生的空間想象才能本節(jié)課通過知識(shí)的梳理和典型例題的講解,使同學(xué)們理解和掌握空間幾何體的外表積、體積的相關(guān)知識(shí),并進(jìn)步學(xué)生的空間想象才能、抽象概括才能、幾何直觀才能以及計(jì)算才能.1柱、錐、臺(tái)和球的側(cè)面積和體積面積體積圓柱S側(cè)2rhVShr2h圓錐S側(cè)rlVShr2hr2圓臺(tái)S側(cè)r1r2lVS上

2、S下hrrr1r2h直棱柱S側(cè)ChVSh正棱錐S側(cè)ChVSh正棱臺(tái)S側(cè)CChVS上S下h球S球面4R2VR32.幾何體的外表積1棱柱、棱錐、棱臺(tái)的外表積就是各面面積之和2圓柱、圓錐、圓臺(tái)的側(cè)面展開圖分別是矩形、扇形、扇環(huán)形;它們的外表積等于側(cè)面積與底面面積之和【學(xué)前診斷】1. 難度易圓錐的底面半徑為2cm,高為cm,那么該圓錐的體積為 .2難度 中 假設(shè)某空間幾何體的三視圖如下圖,那么該幾何體的體積是 A. B. C. D.3難度 中 假設(shè)一個(gè)底面是正三角形的三棱柱的正視圖如下圖,那么其側(cè)面積等于 A B2 C D6【經(jīng)典例題】例1將圓心角為,面積為的扇形,作為圓錐的側(cè)面,那么圓錐的外表積等于

3、_.例2假設(shè)某幾何體的三視圖單位:cm如以下圖所示,那么此幾何體的側(cè)面積等于 A. B C D例3假設(shè)棱長(zhǎng)為3的正方體的頂點(diǎn)都在同一球面上,那么該球的外表積為_.例4一個(gè)棱錐的三視圖如圖,那么該棱錐的全面積單位:cm2為 A. B C D例 5一個(gè)幾何體的三視圖如下圖,那么此幾何體的體積是_.例 6一個(gè)幾何體的三視圖如下圖,那么這個(gè)幾何體的體積等于 A. B C D例 7如圖是一個(gè)幾何體的三視圖,假設(shè)它的體積是,那么=_.例 8將邊長(zhǎng)為的正方形ABCD沿對(duì)角線AC折起,使BD=,那么三棱錐D-ABC的體積為 A. B.C. D.例 9有一根長(zhǎng)為3 cm、底面半徑為1 cm的圓柱形鐵管,用一段鐵

4、絲在鐵管上纏繞2圈,并使鐵絲的兩個(gè)端點(diǎn)落在圓柱的同一母線的兩端,那么鐵絲的最短長(zhǎng)度為多少?【本課總結(jié)】1面積、體積的計(jì)算中應(yīng)注意的問題1柱、錐、臺(tái)體的側(cè)面積分別是某側(cè)面展開圖的面積,因此,弄清側(cè)面展開圖的形狀及各線段的位置關(guān)系,是求側(cè)面積及解決有關(guān)問題的關(guān)鍵2計(jì)算柱、錐、臺(tái)體的體積關(guān)鍵是找到相應(yīng)的底面積和高充分運(yùn)用多面體的截面及旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化成平面問題3球的有關(guān)問題,注意球半徑與截面圓半徑,球心到截面間隔 構(gòu)成直角三角形4有關(guān)幾何體展開圖與平面圖形折成幾何體問題,在解決的過程中注意按什么線作軸來展或折,還要堅(jiān)持被展或被折的平面,變換前、后在該面內(nèi)的大小關(guān)系與位置關(guān)系不變?cè)谕瓿烧?/p>

5、或折后,要注意條件的轉(zhuǎn)化對(duì)解題也很重要2與球有關(guān)的組合體問題與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出適宜的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長(zhǎng)等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對(duì)角線長(zhǎng)等于球的直徑球與旋轉(zhuǎn)體的組合,通常作它們的軸截面進(jìn)展解題,球與多面體的組合,通過多面體的一條側(cè)棱和球心,或“切點(diǎn)、“接點(diǎn)作出截面圖【活學(xué)活用】1難度 中假設(shè)某幾何體的三視圖單位:cm如下圖,那么此幾何體的體積是 A.cm3 B. cm3C. cm3 D. cm32. 難度 難如圖,正方體的棱長(zhǎng)為2,動(dòng)點(diǎn)E、F在棱上.點(diǎn)Q是CD的中點(diǎn)動(dòng)點(diǎn)P在棱AD上,假設(shè)EF=1,DP=x,E=yx,y大于零,那么三棱錐P-EFQ的體積:A. 與x,y都有關(guān); B. 與x,y都

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論