高一數(shù)學(xué)基礎(chǔ)知識點要點總結(jié)_第1頁
高一數(shù)學(xué)基礎(chǔ)知識點要點總結(jié)_第2頁
高一數(shù)學(xué)基礎(chǔ)知識點要點總結(jié)_第3頁
免費預(yù)覽已結(jié)束,剩余5頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、高一數(shù)學(xué)基礎(chǔ)知識點要點總結(jié)2em; text-align: center;"> 高一數(shù)學(xué)基礎(chǔ)知識點要點總結(jié) 【第一章:集合與函數(shù)概念】 一、集合有關(guān)概念 1.集合的含義 2.集合的中元素的三個特性: (1)元素的確定性如:世界上的山 (2)元素的互異性如:由HAPPY的字母組成的集合H,A,P,Y (3)元素的無序性:如:a,b,c和a,c,b是表示同一個集合 3.集合的表示:如:我校的籃球隊員,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的籃球隊員,B=1,2,3,4,5 (2)集合的表示方法:列舉法與描述法。 注意:常用數(shù)集及其記法:XKb1.Com

2、非負(fù)整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集:N或N+ 整數(shù)集:Z 有理數(shù)集:Q 實數(shù)集:R 1)列舉法:a,b,c 2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合xÎR|x-32,x|x-32 3)語言描述法:例:不是直角三角形的三角形 4)Venn圖: 4、集合的分類: (1)有限集含有有限個元素的集合 (2)無限集含有無限個元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合間的基本關(guān)系 1.“包含關(guān)系子集 注意:有兩種可能 (1)A是B的一部分,; (2)A與B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2

3、.“相等關(guān)系:A=B(55,且55,則5=5)實 例:設(shè)A=x|x2-1=0B=-1,1“元素相同則兩集合相等 即: 任何一個集合是它本身的子集。AíA 真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA) 如果AíB,BíC,那么AíC 如果AíB同時BíA那么A=B 3.不含任何元素的集合叫做空集,記為 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集個數(shù): 有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集 三、集合的運算 運算

4、類型交集并集補(bǔ)集 定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作A交B),即AB=x|xA,且xB. 由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB=x|xA,或xB). 【第二章:基本初等函數(shù)】 一、指數(shù)函數(shù) (一)指數(shù)與指數(shù)冪的運算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且. 當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)

5、. 當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。 注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時, 2.分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定: 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義 指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪. 3.實數(shù)指數(shù)冪的運算性質(zhì) (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponentia

6、l),其中x是自變量,函數(shù)的定義域為R. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) 【第三章:第三章函數(shù)的應(yīng)用】 1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。 2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即: 方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點. 3、函數(shù)零點的求法: 求函數(shù)的零點: (1)(代數(shù)法)求方程的實數(shù)根; (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點. 4、二次函數(shù)的零點: 二次函數(shù). 1)0,方程有兩不等實根,二次函數(shù)的圖象與軸有

7、兩個交點,二次函數(shù)有兩個零點.2)=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點. 3)0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點. 2高一數(shù)學(xué)重要知識點梳理 一丶函數(shù)的有關(guān)概念 1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個函數(shù).記作: y=f(x),xA.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域. 注意:

8、1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。 求函數(shù)的定義域時列不等式組的主要依據(jù)是: (1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零; (4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數(shù)為零底不可以等于零, (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義. u 相同函數(shù)的判斷方法:表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));定義域一致 (兩點必須同時具備) 2.值域 : 先考慮其定義域 (1)觀察法 (2)配方法 (3)代換法 3. 函數(shù)圖象知識歸納 (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (xA)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上 . (2) 畫法 A、 描點法: B、 圖象變換法 常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 4.區(qū)間的概念 (1)區(qū)間的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論