版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上初中函數(shù)知識點總結知識點一、平面直角坐標系1、平面直角坐標系在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。為了便于描述坐標平面內(nèi)點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點,不屬于任何象限。2、點的坐標的概念點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位
2、置不能顛倒。平面內(nèi)點的坐標是有序?qū)崝?shù)對,當時,(a,b)和(b,a)是兩個不同點的坐標。知識點二、不同位置的點的坐標的特征 1、各象限內(nèi)點的坐標的特征 點P(x,y)在第一象限點P(x,y)在第二象限點P(x,y)在第三象限點P(x,y)在第四象限2、坐標軸上的點的特征點P(x,y)在x軸上,x為任意實數(shù)點P(x,y)在y軸上,y為任意實數(shù)點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)3、兩條坐標軸夾角平分線上點的坐標的特征點P(x,y)在第一、三象限夾角平分線上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)4、和坐標軸平行的直線上點的坐標的特征
3、位于平行于x軸的直線上的各點的縱坐標相同。位于平行于y軸的直線上的各點的橫坐標相同。5、關于x軸、y軸或遠點對稱的點的坐標的特征點P與點p關于x軸對稱橫坐標相等,縱坐標互為相反數(shù)點P與點p關于y軸對稱縱坐標相等,橫坐標互為相反數(shù)點P與點p關于原點對稱橫、縱坐標均互為相反數(shù)6、點到坐標軸及原點的距離點P(x,y)到坐標軸及原點的距離:(1)點P(x,y)到x軸的距離等于(2)點P(x,y)到y(tǒng)軸的距離等于(3)點P(x,y)到原點的距離等于知識點三、函數(shù)及其相關概念 1、變量與常量在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。一般地,在某一變化過程中有兩個變量x與y,如
4、果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。2、函數(shù)解析式用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。3、函數(shù)的三種表示法及其優(yōu)缺點(1)解析法兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。(2)列表法把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。(3)圖像法用圖像表示函數(shù)關系的方法叫做圖像法。4、由函數(shù)解析式畫其圖像的一般步驟(1)列表:列表給出自變量與函數(shù)的一些對應值(2)描點:以表中每對對應值為坐
5、標,在坐標平面內(nèi)描出相應的點(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。知識點四、正比例函數(shù)和一次函數(shù) 1、正比例函數(shù)和一次函數(shù)的概念一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。特別地,當一次函數(shù)中的b為0時,(k為常數(shù),k0)。這時,y叫做x的正比例函數(shù)。2、一次函數(shù)的圖像 所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。k的符號b的符號函數(shù)圖像圖像特征k0b0 y 0 x圖像經(jīng)過一、二、三象限,y隨x的增大而增大。b0 y 0 x圖像經(jīng)過一、三
6、、四象限,y隨x的增大而增大。k0k0 y 0 x圖像經(jīng)過一、二、四象限,y隨x的增大而減小b0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大,圖像從左之右上升;(2)當k0時,y隨x的增大而增大(2)當k0時,直線與y軸交點在y軸正半軸上(4)當b0k0時,函數(shù)圖像的兩個分支分別在第一、三象限。在每個象限內(nèi),y隨x 的增大而減小。x的取值范圍是x0, y的取值范圍是y0;當k0a0 y 0 x y 0 x 性質(zhì)(1)拋物線開口向上,并向上無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側,即當x時,y隨x的增大而增大,簡記左減右增;(4)拋物線有最低點,當x=時,y有最小值,
7、(1)拋物線開口向下,并向下無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側,即當x時,y隨x的增大而減小,簡記左增右減;(4)拋物線有最高點,當x=時,y有最大值,2、二次函數(shù)與一元二次方程的關系(二次函數(shù)與軸交點情況):一元二次方程是二次函數(shù)當函數(shù)值時的特殊情況.圖象與軸的交點個數(shù): 當時,圖象與軸交于兩點,其中的是一元二次方程的兩根這兩點間的距離推導過程:若拋物線與軸兩交點為,由于、是方程的兩個根,故 當時,圖象與軸只有一個交點; 當時,圖象與軸沒有交點. 當時,圖象落在軸的上方,無論為任何實數(shù),都有; 當時,圖象落在軸的下方,無論為任何實數(shù),都有 記憶規(guī)律:一元二次
8、方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標。因此一元二次方程中的,在二次函數(shù)中表示圖像與x軸是否有交點。當0時,圖像與x軸有兩個交點;當=0時,圖像與x軸有一個交點;當0時,拋物線開口向上;0時,拋物線開口向下;的絕對值越大,開口越小 (2)和共同決定拋物線對稱軸的位置.由于拋物線的對稱軸是直線,故:時,對稱軸為軸;(即、同號)時,對稱軸在軸左側;(即、異號)時,對稱軸在軸右側.(口訣左同 右異)(3)的大小決定拋物線與軸交點的位置. 當時,拋物線與軸有且只有一個交點(0,): ,拋物線經(jīng)過原點; ,與軸交于正半軸; ,與軸交于負半軸. 以上三點中,當結論和條件互換時,仍成立.如拋物線的
9、對稱軸在軸右側,則 .知識點十四、中考點擊 考點分析:內(nèi)容要求1、函數(shù)的概念和平面直角坐標系中某些點的坐標特點2、自變量與函數(shù)之間的變化關系及圖像的識別,理解圖像與變量的關系3、一次函數(shù)的概念和圖像4、一次函數(shù)的增減性、象限分布情況,會作圖5、反比例函數(shù)的概念、圖像特征,以及在實際生活中的應用6、二次函數(shù)的概念和性質(zhì),在實際情景中理解二次函數(shù)的意義,會利用二次函數(shù)刻畫實際問題中變量之間的關系并能解決實際生活問題命題預測:函數(shù)是數(shù)形結合的重要體現(xiàn),是每年中考的必考內(nèi)容,函數(shù)的概念主要用選擇、填空的形式考查自變量的取值范圍,及自變量與因變量的變化圖像、平面直角坐標系等,一般占3-6分左右一次函數(shù)與一次方程有緊密地聯(lián)系,是中考必考內(nèi)容,一般以填空、選擇、解答題及綜合題的形式考查,占6分左右反比例函數(shù)的圖像和性質(zhì)的考查常以客觀題形式出現(xiàn),要關注反比例函數(shù)與實際問題的聯(lián)系,突出應用價值,36分;二次函數(shù)是初中數(shù)學的一個十分重要的內(nèi)容,是中考的熱點,多以壓軸題出現(xiàn)在試卷中要求:能通過對實際問題情景分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義;會用描點法畫二次函數(shù)圖像,能叢圖像上分析二次函數(shù)的性質(zhì);會根據(jù)公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《型班組建設的內(nèi)》課件
- 《外科常用手術器械》課件
- 《大型企業(yè)物流介紹》課件
- 2025年烏蘭察布貨運車從業(yè)考試題
- 《行文制度》課件
- 《城市地下街設計》課件
- 第一單元 青春時光(B卷·能力提升練) 帶解析
- 旅游景點設施使用與管理制度
- 養(yǎng)殖場環(huán)保工程師招聘合同
- 企業(yè)年會演員聘請模板
- 網(wǎng)頁視覺設計智慧樹知到期末考試答案章節(jié)答案2024年湖南應用技術學院
- 刑事缺席審判制度探討
- 船舶險課件-PICC-沈于暉課件
- 在線網(wǎng)課知慧《中學政治教學論(渭南師范學院)》單元測試考核答案
- 國開2024年《機械設計基礎》形考任務1-4答案
- 國開2024年《獸醫(yī)基礎》形考任務1-4答案
- 公路工程設計設計的質(zhì)量保證措施、進度保證措施
- GB/T 43786-2024音頻、視頻和信息技術設備生產(chǎn)過程中的例行電氣安全試驗
- XXX加油站安全驗收評價報告
- 超市經(jīng)營管理方案
- 開源情報行業(yè)分析
評論
0/150
提交評論