


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、精選文檔數(shù)據(jù)分析師常見的7道筆試題目及答案導(dǎo)讀:探索性數(shù)據(jù)分析側(cè)重于在數(shù)據(jù)之中發(fā)現(xiàn)新的特征,而驗(yàn)證性數(shù)據(jù)分析則側(cè)重于已有假設(shè)的證實(shí)或證偽。以下是由小編J.L為您整理推薦的實(shí)用的應(yīng)聘筆試題目和經(jīng)驗(yàn),歡迎參考閱讀。1、海量日志數(shù)據(jù),提取出某日訪問百度次數(shù)最多的那個(gè)IP。首先是這一天,并且是訪問百度的日志中的IP取出來,逐個(gè)寫入到一個(gè)大文件中。注意到IP是32位的,最多有個(gè)232個(gè)IP。同樣可以采用映射的方法,比如模1000,把整個(gè)大文件映射為1000個(gè)小文件,再找出每個(gè)小文中出現(xiàn)頻率最大的IP(可以采用hash_map進(jìn)行頻率統(tǒng)計(jì),然后再找出頻率最大的幾個(gè))及相應(yīng)的頻率。然后再在這1000個(gè)最大的
2、IP中,找出那個(gè)頻率最大的IP,即為所求。或者如下闡述:算法思想:分而治之+Hash1.IP地址最多有232=4G種取值情況,所以不能完全加載到內(nèi)存中處理;2.可以考慮采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分別存儲(chǔ)到1024個(gè)小文件中。這樣,每個(gè)小文件最多包含4MB個(gè)IP地址;3.對(duì)于每一個(gè)小文件,可以構(gòu)建一個(gè)IP為key,出現(xiàn)次數(shù)為value的Hash map,同時(shí)記錄當(dāng)前出現(xiàn)次數(shù)最多的那個(gè)IP地址;4.可以得到1024個(gè)小文件中的出現(xiàn)次數(shù)最多的IP,再依據(jù)常規(guī)的排序算法得到總體上出現(xiàn)次數(shù)最多的IP;2、搜索引擎會(huì)通過日志文件把用戶每次檢索使用的所有檢索
3、串都記錄下來,每個(gè)查詢串的長度為1-255字節(jié)。假設(shè)目前有一千萬個(gè)記錄(這些查詢串的重復(fù)度比較高,雖然總數(shù)是1千萬,但如果除去重復(fù)后,不超過3百萬個(gè)。一個(gè)查詢串的重復(fù)度越高,說明查詢它的用戶越多,也就是越熱門。),請(qǐng)你統(tǒng)計(jì)最熱門的10個(gè)查詢串,要求使用的內(nèi)存不能超過1G。典型的Top K算法,還是在這篇文章里頭有所闡述,文中,給出的最終算法是:第一步、先對(duì)這批海量數(shù)據(jù)預(yù)處理,在O(N)的時(shí)間內(nèi)用Hash表完成統(tǒng)計(jì)(之前寫成了排序,特此訂正。July、2011.04.27);第二步、借助堆這個(gè)數(shù)據(jù)結(jié)構(gòu),找出Top K,時(shí)間復(fù)雜度為NlogK。即,借助堆結(jié)構(gòu),我們可以在log量級(jí)的時(shí)間內(nèi)查找和調(diào)整
4、/移動(dòng)。因此,維護(hù)一個(gè)K(該題目中是10)大小的小根堆,然后遍歷300萬的Query,分別和根元素進(jìn)行對(duì)比所以,我們最終的時(shí)間復(fù)雜度是:O(N) + N*O(logK),(N為1000萬,N為300萬)。ok,更多,詳情,請(qǐng)參考原文?;蛘撸翰捎胻rie樹,關(guān)鍵字域存該查詢串出現(xiàn)的次數(shù),沒有出現(xiàn)為0。最后用10個(gè)元素的最小推來對(duì)出現(xiàn)頻率進(jìn)行排序。3、有一個(gè)1G大小的一個(gè)文件,里面每一行是一個(gè)詞,詞的大小不超過16字節(jié),內(nèi)存限制大小是1M。返回頻數(shù)最高的100個(gè)詞。方案:順序讀文件中,對(duì)于每個(gè)詞x,取hash(x)P00,然后按照該值存到5000個(gè)小文件(記為x0,x1,x4999)中。這樣每個(gè)文
5、件大概是200k左右。如果其中的有的文件超過了1M大小,還可以按照類似的方法繼續(xù)往下分,直到分解得到的小文件的大小都不超過1M。對(duì)每個(gè)小文件,統(tǒng)計(jì)每個(gè)文件中出現(xiàn)的詞以及相應(yīng)的頻率(可以采用trie樹/hash_map等),并取出出現(xiàn)頻率最大的100個(gè)詞(可以用含 100 個(gè)結(jié)點(diǎn)的最小堆),并把100個(gè)詞及相應(yīng)的頻率存入文件,這樣又得到了5000個(gè)文件。下一步就是把這5000個(gè)文件進(jìn)行歸并(類似與歸并排序) 的過程了。4、有10個(gè)文件,每個(gè)文件1G,每個(gè)文件的每一行存放的都是用戶的query,每個(gè)文件的query都可能重復(fù)。要求你按照query的頻度排序。還是典型的TOP K算法,解決方案如下:
6、方案1:順序讀取10個(gè)文件,按照hash(query)的結(jié)果將query寫入到另外10個(gè)文件(記為)中。這樣新生成的文件每個(gè)的大小大約也1G(假設(shè)hash函數(shù)是隨機(jī)的)。找一臺(tái)內(nèi)存在2G左右的機(jī)器,依次對(duì)用hash_map(query, query_count)來統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù)。利用快速/堆/歸并排序按照出現(xiàn)次數(shù)進(jìn)行排序。將排序好的query和對(duì)應(yīng)的 query_cout輸出到文件中。這樣得到了10個(gè)排好序的文件(記為)。對(duì)這10個(gè)文件進(jìn)行歸并排序(內(nèi)排序與外排序相結(jié)合)。方案2:一般query的總量是有限的,只是重復(fù)的次數(shù)比較多而已,可能對(duì)于所有的query,一次性就可以加入到
7、內(nèi)存了。這樣,我們就可以采用trie樹/hash_map等直接來統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù),然后按出現(xiàn)次數(shù)做快速/堆/歸并排序就可以了。方案3:與方案1類似,但在做完hash,分成多個(gè)文件后,可以交給多個(gè)文件來處理,采用分布式的架構(gòu)來處理(比如MapReduce),最后再進(jìn)行合并。5、 給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url?方案1:可以估計(jì)每個(gè)文件安的大小為5G64=320G,遠(yuǎn)遠(yuǎn)大于內(nèi)存限制的4G。所以不可能將其完全加載到內(nèi)存中處理??紤]采取分而治之的方法。遍歷文件a,對(duì)每個(gè)url求取hash(url)00,然后根
8、據(jù)所取得的值將url分別存儲(chǔ)到1000個(gè)小文件(記為a0,a1,a999)中。這樣每個(gè)小文件的大約為300M。遍歷文件b,采取和a相同的方式將url分別存儲(chǔ)到1000小文件(記為b0,b1,b999)。這樣處理后,所有可能相同的url都在對(duì)應(yīng)的小文件(a0vsb0,a1vsb1,a999vsb999)中,不對(duì)應(yīng)的小文件不可能有相同的url。然后我們只要求出1000對(duì)小文件中相同的 url即可。求每對(duì)小文件中相同的url時(shí),可以把其中一個(gè)小文件的url存儲(chǔ)到hash_set中。然后遍歷另一個(gè)小文件的每個(gè)url,看其是否在剛才構(gòu)建的hash_set中,如果是,那么就是共同的url,存到文件里面就可
9、以了。方案2:如果允許有一定的錯(cuò)誤率,可以使用Bloom filter,4G內(nèi)存大概可以表示340億bit。將其中一個(gè)文件中的url使用 Bloom filter映射為這340億bit,然后挨個(gè)讀取另外一個(gè)文件的url,檢查是否與Bloom filter,如果是,那么該url應(yīng)該是共同的url(注意會(huì)有一定的錯(cuò)誤率)。Bloom filter日后會(huì)在本BLOG內(nèi)詳細(xì)闡述。6、在2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù),注,內(nèi)存不足以容納這2.5億個(gè)整數(shù)。方案1:采用2-Bitmap(每個(gè)數(shù)分配2bit,00表示不存在,01表示出現(xiàn)一次,10表示多次,11無意義)進(jìn)行,共需內(nèi)存 232 * 2 bit=
10、1 GB內(nèi)存,還可以接受。然后掃描這2.5億個(gè)整數(shù),查看Bitmap中相對(duì)應(yīng)位,如果是00變01,01變10,10保持不變。所描完事后,查看 bitmap,把對(duì)應(yīng)位是01的整數(shù)輸出即可。方案2:也可采用與第1題類似的方法,進(jìn)行劃分小文件的方法。然后在小文件中找出不重復(fù)的整數(shù),并排序。然后再進(jìn)行歸并,注意去除重復(fù)的元素。7、騰訊面試題:給40億個(gè)不重復(fù)的unsigned int的整數(shù),沒排過序的,然后再給一個(gè)數(shù),如何快速判斷這個(gè)數(shù)是否在那40億個(gè)數(shù)當(dāng)中?與上第6題類似,我的第一反應(yīng)時(shí)快速排序+二分查找。以下是其它更好的方法:方案1:oo,申請(qǐng)512M的內(nèi)存,一個(gè)bit位代表一個(gè)unsigned int值。讀入40億個(gè)數(shù),設(shè)置
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司毛衣直播策劃方案
- 公司行政服務(wù)活動(dòng)方案
- 公司組織跑步小活動(dòng)方案
- 公司校招策劃方案
- 公司春節(jié)后開業(yè)活動(dòng)方案
- 公司新春慰問福利活動(dòng)方案
- 公司瑜伽學(xué)習(xí)活動(dòng)方案
- 公司組織制作香熏活動(dòng)方案
- 公司氛圍策劃方案
- 公司聚會(huì)桌面活動(dòng)方案
- 《2025版防范電信網(wǎng)絡(luò)詐騙宣傳手冊(cè)》專題講座
- 黑龍江司法警官職業(yè)學(xué)院2025年招生政治考察表
- 信息科組管理制度
- 致命性肺血栓栓塞癥急救護(hù)理專家共識(shí)(2024版)解讀
- 濟(jì)寧醫(yī)學(xué)院《科學(xué)技術(shù)哲學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年醫(yī)藥代表職業(yè)資格考試試題及答案
- 項(xiàng)目合作經(jīng)驗(yàn)與能力證明(8篇)
- T-CACM 1363-2021 中藥配方顆粒包裝規(guī)范
- 動(dòng)車組受電弓途中故障應(yīng)急處理于正航00課件
- 2025湖北中考:生物必背知識(shí)點(diǎn)
- 《教學(xué)管理經(jīng)驗(yàn)分享》課件
評(píng)論
0/150
提交評(píng)論