




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、北京理工大學(xué)招收單獨考試碩士生考試說明及考試大綱數(shù) 學(xué)考試科目: 高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計 第一部分:考試內(nèi)容及要求高等數(shù)學(xué) 一、函數(shù)、極限、連續(xù) 考試內(nèi)容函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)簡單應(yīng)用問題的函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限與右極限無窮小和無窮大的概念及其關(guān)系無窮小的性質(zhì)及無窮小的比較極限的四則運算極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限 : 函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連
2、續(xù)函數(shù)的性質(zhì) 考試要求 1理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。 2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。 3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。 4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系。6掌握極限的性質(zhì)及四則運算法則。7掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。8理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。 9理解函
3、數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型。10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理)及其簡單應(yīng)用。二、一元函數(shù)微分學(xué) 考試內(nèi)容 導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線基本初等函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)和微分的四則運算復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù) 一階微分形式的不變性。微分中值定理洛必達(dá)(LHospital)法則函數(shù)單調(diào)性的判別 函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪
4、函數(shù)最大值和最小值弧微分曲率的概念曲率半徑??荚囈?1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。2掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。3了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)。4. 會求分段函數(shù)的一階、二階導(dǎo)數(shù)。5會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。6理解并會用羅爾定理、拉格朗日中值定理,了解柯西中值定理。 7 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)
5、性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應(yīng)用。8會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。9掌握用洛必達(dá)法則求未定式極限的方法。10了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。三、一元函數(shù)積分學(xué) 考試內(nèi)容 原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導(dǎo)數(shù)牛頓萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法簡單有理函數(shù)、三角函數(shù)的有理式和無理函數(shù)的積分廣義積分概念 定積分的應(yīng)用。考試要求1理解原函數(shù)概念,理解不定積分和定積分的概
6、念。2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。3會求簡單有理函數(shù)、三角函數(shù)有理式及無理函數(shù)的積分。4理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。5了解廣義積分的概念,會計算簡單的廣義積分。6掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積、平行截面面積為已知的立體體積、功等)。四、向量代數(shù)和空間解析幾何 考試內(nèi)容 向量的概念向量的線性運算向量的數(shù)量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標(biāo)表達(dá)式及其運算單位向量方向數(shù)與方
7、向余弦曲面方程和空間曲線方程的概念平面方程、直線方程平面與平面、平面與直線、直線與直線的以及平行、垂直的條件點到平面和點到直線的距離球面母線平行于坐標(biāo)軸的柱面旋轉(zhuǎn)軸為坐標(biāo)軸的旋轉(zhuǎn)曲面的方程常用的二次曲面方程及其圖形空間曲線的參數(shù)方程和一般方程空間曲線在坐標(biāo)平面上的投影曲線方程考試要求1. 理解空間直角坐標(biāo)系,理解向量的概念及其表示。 2掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件。 3理解單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)行向量運算的方法。 4掌握平面方
8、程和直線方程及其求法。 5會求平面與平面、平面與直線、 直線與直線之間的夾角。6會求點到直線以及點到平面的距離。 7. 了解曲面方程和空間曲線方程的概念。 8. 了解常用二次曲面的方程及其圖形,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。 9. 了解空間曲線的參數(shù)方程和一般方程.了解空間曲線在坐標(biāo)平面上的 投影,并會求其方程。 五、多元函數(shù)微分學(xué) 考試內(nèi)容 多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限和連續(xù)的概念 有界閉區(qū)域上二元連
9、續(xù)函數(shù)的性質(zhì)多元函數(shù)偏導(dǎo)數(shù)和全微分多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)數(shù)方向?qū)?shù)和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數(shù)的二階泰勒公式多元函數(shù)的極值和條件極值多元函數(shù)的最大值、最小值及其簡單應(yīng)用 考試要求 1理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。 2了解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。 3理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分。 4理解方向?qū)?shù)與梯度的概念并掌握其計算方法。 5掌握
10、多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法。 6了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù)。 7了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。 8了解二元函數(shù)的二階泰勒公式。 9理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題。 六、多元函數(shù)積分學(xué) 考試內(nèi)容 二重
11、積分、三重積分的概念及性質(zhì)二重積分與三重積分的計算和應(yīng)用兩類曲線積分的概念、性質(zhì)及計算兩類曲線積分的關(guān)系格林(Green)公式平面曲線積分與路徑無關(guān)的條件已知全微分求原函數(shù)兩類曲面積分的概念、性質(zhì)及計算 兩類曲面積分的關(guān)系高斯(Gauss)公式斯托克斯(STOKES)公式散度、旋度的概念及計算 曲線積分和曲面積分的應(yīng)用 考試要求 1理解二重積分、三重積分的概念,了解重積分的性質(zhì)。2掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)),會計算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo))。 3理解兩類曲線積分
12、的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。 4掌握計算兩類曲線積分的方法。 5掌握格林公式并會運用平面曲線積分與路徑無關(guān)的條件,會求全微分的原函數(shù)。 6了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法,會用高斯公式、斯托克斯公式計算曲面、曲線積分。 7了解散度與旋度的概念,并會計算。 8會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、重心、轉(zhuǎn)動慣量、引力、功及流量等)。
13、七、無窮級數(shù) 考試內(nèi)容 常數(shù)項級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與p級數(shù)以及它們的收斂性正項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂函數(shù)項級數(shù)的收斂域與和函數(shù)的概念冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) 簡單冪級數(shù)的和函數(shù)的求法初等函數(shù)冪級數(shù)展開式 函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù)狄利克雷(Dirichlet)定理函數(shù)在 上的傅里葉級數(shù)函數(shù)在上的正弦級數(shù)和余弦級數(shù)
14、 考試要求 1理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件。 2掌握幾何級數(shù)與p級數(shù)的收斂與發(fā)散的條件。 3掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。 4掌握交錯級數(shù)的萊布尼茨判別法。 5. 了解任意項級數(shù)絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系。 6了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。 7理解冪級數(shù)的收斂半徑的概念、并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域
15、的求法。 8了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項微分和逐項積分),會求簡單冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和。 9了解函數(shù)展開為泰勒級數(shù)的充分必要條件。 10掌握、和的麥克勞林展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù)。 11了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在上的函數(shù)展開為傅里葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和的表達(dá)式。 八、常微分方程 考試內(nèi)容 常微分方程的基本概念變量可分離的方
16、程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程 微分方程簡單應(yīng)用 考試要求 1了解微分方程及其解、階、通解、初始條件和特解等概念。 2掌握變量可分離的方程及一階線性方程的解法。3會解齊次方程、伯努利方程和全微分方程。4理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。5掌握二隊常系數(shù)齊次線性微分方程的解法。6會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。7會用微分方程解決一些簡單的應(yīng)用問題。線性代數(shù)一、 行列式考試內(nèi)容行列式
17、的定義和基本性質(zhì) 行列式按行(列)展開定理考試要求1了解行列式的定義,掌握行列式的性質(zhì)。2會用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式。二、矩陣考試內(nèi)容矩陣的定義 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的定義及性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算考試要求1理解矩陣的定義,了解對角矩陣、數(shù)量矩陣、單位矩陣、三角矩陣、對稱矩陣及反對稱矩陣的定義及其性質(zhì)。2 掌握矩陣的線性運算、乘法、轉(zhuǎn)置及其運算規(guī)律,了解方陣的冪及方陣乘積的行列式。3理解逆矩陣的定義,掌握逆矩陣的性質(zhì)及矩陣可逆的充分必要
18、條件,理解伴隨矩陣的定義,會用伴隨矩陣求逆矩陣。4了解矩陣的初等變換、初等矩陣及矩陣等價的定義,理解矩陣的秩的定義,掌握用初等變換求逆矩陣和矩陣的秩的方法。5 了解分塊矩陣的定義,掌握分塊矩陣的運算法則。三、向量考試內(nèi)容向量的定義 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價向量組 向量組的秩及其與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的正交規(guī)范化方法考試要求1了解向量的定義,掌握向量的加法和數(shù)乘運算。2理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)的定義,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別方法。3理解向量組的極大線性無關(guān)組及向量
19、組的秩的定義,掌握向量組的極大線性無關(guān)組及秩的求法。4 了解向量組等價以及矩陣的秩與其行(列)向量組的秩之間的關(guān)系。5了解向量的內(nèi)積的定義,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)正交化方法。四、線性方程組考試內(nèi)容線性方程組的高斯(Gauss)消元法、克萊姆(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的通解考試要求1掌握解線性方程組的高斯消元法、克萊姆法則。2理解齊次線性方程組有非零解的充分必要條件以及非齊次線性方程組有解的充分必要條件。3理解齊次線性方程組的基礎(chǔ)解系及解的結(jié)構(gòu),掌
20、握齊次線性方程組的基礎(chǔ)解系和通解的求法。4理解非齊次線性方程組解的結(jié)構(gòu),掌握非齊次線性方程組通解的求法。五、矩陣的特征值與特征向量考試內(nèi)容矩陣的特征值與特征向量的定義和性質(zhì) 相似矩陣的定義與性質(zhì) 矩陣可相似對角化的充分必要條件以及相似對角矩陣 實對稱矩陣的特征值、特征向量以及相似對角矩陣考試要求1理解矩陣的特征值與特征向量的定義,掌握矩陣的特征值的性質(zhì)以及矩陣的特征值與特征向量的求法。2 理解矩陣相似的定義、相似矩陣的性質(zhì)以及矩陣可相似對角化的充分必要條件,掌握矩陣相似對角化的方法。3 掌握實對稱矩陣的特征值與特征向量的性質(zhì)及其相似對角化的方法。六、二次型考試內(nèi)容二次型及其矩陣表示 合同變換與
21、合同矩陣 二次型的秩 二次型的標(biāo)準(zhǔn)形、規(guī)范形 慣性定理 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性考試要求1了解二次型的定義,會用矩陣表示二次型,了解二次型的秩、合同變換以及合同矩陣的定義,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形的定義以及慣性定理。2 會用正交變換以及配方法化二次型為標(biāo)準(zhǔn)形。3 理解正定二次型、正定矩陣的定義,會判定它們的正定性。概率論與數(shù)理統(tǒng)計一. 隨機(jī)事件與概率考試內(nèi)容隨機(jī)事件與樣本空間 事件的關(guān)系與運算 完備事件組 概率的概念 概率的基本性質(zhì) 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復(fù)試驗 考試要求1了解樣本空間(基本事件空間)的概念,理
22、解隨機(jī)事件的概念,掌握事件的關(guān)系及運算。2理解概率、條件概率的概念,掌握概率的基本性質(zhì). 會計算古典概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯公式。3理解事件的獨立性概念,掌握用事件獨立性進(jìn)行概率計算;理解獨立重復(fù)試驗的概念,掌握計算有關(guān)事件概率的方法。二. 隨機(jī)變量及其分布考試內(nèi)容隨機(jī)變量 隨機(jī)變量的分布函數(shù)的概念及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度 常見隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布考試要求1理解隨機(jī)變量的概念;理解分布函數(shù)的概念及其性質(zhì);會計算與隨機(jī)變量相聯(lián)系的事件的概率。2理解離散型隨機(jī)變量及其概率分布的概念,掌握0-1分
23、布、二項分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用。3了解泊松定理的結(jié)論和應(yīng)用條件,會用泊松分布近似表示二項分布。4理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用。5會求隨機(jī)變量函數(shù)的分布。三. 多維隨機(jī)變量及其分布考試內(nèi)容多維隨機(jī)變量及其概率分布 二維離散型隨機(jī)變量的概率分布 邊緣分布和條件分布 二維連續(xù)型隨機(jī)變量的概率密度、邊緣密度和條件密度 隨機(jī)變量的獨立性和不相關(guān)性 常見二維隨機(jī)變量的分布 兩個及兩個以上隨機(jī)變量函數(shù)的分布考試要求1理解多維隨機(jī)變量的分布的概念和基本性質(zhì)。2理解二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布;理解二維連續(xù)型隨機(jī)
24、變量的概率密度、邊緣密度和條件密度, 會求與二維隨機(jī)變量相關(guān)事件的概率。3理解隨機(jī)變量的獨立性和不相關(guān)概念, 掌握離散型和連續(xù)型隨機(jī)變量的獨立的條件;理解隨機(jī)變量的獨立性和不相關(guān)的關(guān)系。4會根據(jù)兩個隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布;會根據(jù)多個獨立的隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布。四. 隨機(jī)變量的數(shù)字特征考試內(nèi)容隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì), 隨機(jī)變量函數(shù)的數(shù)學(xué)期望, 矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)考試要求1理解隨機(jī)變量的數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù)) 的概念, 會運用數(shù)字特征的基本性質(zhì), 并掌握常用分布的數(shù)字特征。2 會求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。五
25、. 大數(shù)定律和中心極限定理考試內(nèi)容切比雪夫(Chebyshev)不等式 切比雪夫大數(shù)律 伯努利(Bernoulli)大數(shù)律 辛欽(Khinchine)大數(shù)律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列維-林德伯格(Levy-Lindberg)定理考試要求1了解切比雪夫不等式。2了解切比雪夫大數(shù)律、伯努利大數(shù)律和辛欽大數(shù)律(獨立同分布隨機(jī)變量的大數(shù)律)。3了解棣莫弗-拉普拉斯中心極限定理(二項分布以正態(tài)分布為極限分布)、列維-林德伯格中心極限定理(獨立同分布隨機(jī)變量列的中心極限定理), 并會用相關(guān)定理近似計算有關(guān)事件概率。六. 數(shù)理統(tǒng)計的基本概念考試內(nèi)容總體 個體 簡單隨機(jī)樣本 統(tǒng)計量 樣本均值 樣本方差和樣本矩 -分布 t分布 F分布 分位數(shù) 正態(tài)總體的常用抽樣分布考試要求1理解總體、簡單隨機(jī)樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海寧廠房搬遷協(xié)議書范本
- 員工保密價格協(xié)議書范本
- 創(chuàng)新型企業(yè)財務(wù)總監(jiān)股權(quán)激勵聘用合同模板
- 車輛質(zhì)押與物流運輸一體化合同
- 海鮮餐廳品牌合作經(jīng)營授權(quán)合同
- 農(nóng)村集體菜地領(lǐng)種與社區(qū)服務(wù)共享合同
- 和同學(xué)的協(xié)議書范本
- 美食街餐飲加盟合作協(xié)議范本
- 礦山采礦權(quán)抵押股權(quán)融資合同范本
- 貨物運輸合同模板
- 2025年 云南省危險化學(xué)品經(jīng)營單位安全管理人員考試練習(xí)題附答案
- 2024-2025學(xué)年四年級(下)期末數(shù)學(xué)試卷及答案西師大版2
- 2025-2030年中國高導(dǎo)磁芯行業(yè)深度研究分析報告
- 遠(yuǎn)程胎心監(jiān)護(hù)數(shù)據(jù)解讀
- 2025年 道路運輸企業(yè)主要負(fù)責(zé)人考試模擬試卷(100題)附答案
- 2025至2030中國執(zhí)法系統(tǒng)行業(yè)經(jīng)營效益及前景運行態(tài)勢分析報告
- 2025年全國法醫(yī)專項技術(shù)考試試題及答案
- 供應(yīng)鏈公司展會策劃方案
- 南通市崇川區(qū)招聘 社區(qū)工作者筆試真題2024
- 2025年寧夏銀川市中考?xì)v史三模試卷(含答案)
- 【藝恩】出游趨勢洞察報告
評論
0/150
提交評論