




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高中數(shù)學(xué)概念公式大全一、 三角函數(shù)1、 以角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸正半軸建立直角坐標(biāo)系,在角的終邊上任取一個(gè)異于原點(diǎn)的點(diǎn),點(diǎn)P到原點(diǎn)的距離記為,則sin=,cos=,tg=,ctg=,sec=,csc=。2、同角三角函數(shù)的關(guān)系中,平方關(guān)系是:,;倒數(shù)關(guān)系是:,;相除關(guān)系是:,。3、誘導(dǎo)公式可用十個(gè)字概括為:奇變偶不變,符號(hào)看象限。如:,=,。4、 函數(shù)的最大值是,最小值是,周期是,頻率是,相位是,初相是;其圖象的對(duì)稱軸是直線,凡是該圖象與直線的交點(diǎn)都是該圖象的對(duì)稱中心。5、 三角函數(shù)的單調(diào)區(qū)間: 的遞增區(qū)間是,遞減區(qū)間是;的遞增區(qū)間是,遞減區(qū)間是,的遞增區(qū)間是,
2、的遞減區(qū)間是。6、 7、二倍角公式是:sin2=cos2=tg2=。8、三倍角公式是:sin3= cos3=9、半角公式是:sin= cos=tg=。10、升冪公式是: 。11、降冪公式是: 。12、萬(wàn)能公式:sin= cos= tg=13、sin()sin()=,cos()cos()=。14、=; =; =。15、=。16、sin180=。17、特殊角的三角函數(shù)值: 0sin010cos100tg01不存在0不存在ctg不存在10不存在018、正弦定理是(其中R表示三角形的外接圓半徑):19、由余弦定理第一形式,= 由余弦定理第二形式,cosB=20、ABC的面積用S表示,外接圓半徑用R表示
3、,內(nèi)切圓半徑用r表示,半周長(zhǎng)用p表示則:;21、三角學(xué)中的射影定理:在ABC 中,22、在ABC 中,23、在ABC 中: 24、積化和差公式:,。25、和差化積公式:,。二、 函數(shù)1、 若集合A中有n個(gè)元素,則集合A的所有不同的子集個(gè)數(shù)為,所有非空真子集的個(gè)數(shù)是。二次函數(shù)的圖象的對(duì)稱軸方程是,頂點(diǎn)坐標(biāo)是。用待定系數(shù)法求二次函數(shù)的解析式時(shí),解析式的設(shè)法有三種形式,即,和 (頂點(diǎn)式)。2、 冪函數(shù) ,當(dāng)n為正奇數(shù),m為正偶數(shù),m<n時(shí),其大致圖象是3、 函數(shù)的大致圖象是由圖象知,函數(shù)的值域是,單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是。三、 反三角函數(shù)1、的定義域是-1,1,值域是,奇函數(shù),增函數(shù);
4、的定義域是-1,1,值域是,非奇非偶,減函數(shù); 的定義域是R,值域是,奇函數(shù),增函數(shù); 的定義域是R,值域是,非奇非偶,減函數(shù)。2、當(dāng); 對(duì)任意的,有: 當(dāng)。3、最簡(jiǎn)三角方程的解集:四、 不等式1、若n為正奇數(shù),由可推出嗎? ( 能 )若n為正偶數(shù)呢? (均為非負(fù)數(shù)時(shí)才能)2、同向不等式能相減,相除嗎 (不能)能相加嗎? ( 能 )能相乘嗎? (能,但有條件)3、兩個(gè)正數(shù)的均值不等式是: 三個(gè)正數(shù)的均值不等式是: n個(gè)正數(shù)的均值不等式是:4、兩個(gè)正數(shù)的調(diào)和平均數(shù)、幾何平均數(shù)、算術(shù)平均數(shù)、均方根之間的關(guān)系是6、 雙向不等式是:左邊在時(shí)取得等號(hào),右邊在時(shí)取得等號(hào)。五、 數(shù)列1、等差數(shù)列的通項(xiàng)公式是
5、,前n項(xiàng)和公式是: =。2、等比數(shù)列的通項(xiàng)公式是,前n項(xiàng)和公式是:3、當(dāng)?shù)缺葦?shù)列的公比q滿足<1時(shí),=S=。一般地,如果無(wú)窮數(shù)列的前n項(xiàng)和的極限存在,就把這個(gè)極限稱為這個(gè)數(shù)列的各項(xiàng)和(或所有項(xiàng)的和),用S表示,即S=。4、若m、n、p、qN,且,那么:當(dāng)數(shù)列是等差數(shù)列時(shí),有;當(dāng)數(shù)列是等比數(shù)列時(shí),有。5、 等差數(shù)列中,若Sn=10,S2n=30,則S3n=60;6、等比數(shù)列中,若Sn=10,S2n=30,則S3n=70;六、 復(fù)數(shù)1、 怎樣計(jì)算?(先求n被4除所得的余數(shù),) 2、 是1的兩個(gè)虛立方根,并且: 3、 復(fù)數(shù)集內(nèi)的三角形不等式是:,其中左邊在復(fù)數(shù)z1、z2對(duì)應(yīng)的向量共線且反向(同
6、向)時(shí)取等號(hào),右邊在復(fù)數(shù)z1、z2對(duì)應(yīng)的向量共線且同向(反向)時(shí)取等號(hào)。4、 棣莫佛定理是:5、 若非零復(fù)數(shù),則z的n次方根有n個(gè),即:它們?cè)趶?fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在分布上有什么特殊關(guān)系?都位于圓心在原點(diǎn),半徑為的圓上,并且把這個(gè)圓n等分。6、 若,復(fù)數(shù)z1、z2對(duì)應(yīng)的點(diǎn)分別是A、B,則AOB(O為坐標(biāo)原點(diǎn))的面積是。7、 =。8、 復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)的幾個(gè)基本軌跡: 軌跡為一條射線。 軌跡為一條射線。 軌跡是一個(gè)圓。 軌跡是一條直線。 軌跡有三種可能情形:a)當(dāng)時(shí),軌跡為橢圓;b)當(dāng)時(shí),軌跡為一條線段;c)當(dāng)時(shí),軌跡不存在。 軌跡有三種可能情形:a)當(dāng)時(shí),軌跡為雙曲線;b) 當(dāng)時(shí),軌跡為兩條射
7、線;c) 當(dāng)時(shí),軌跡不存在。七、 排列組合、二項(xiàng)式定理1、 加法原理、乘法原理各適用于什么情形?有什么特點(diǎn)?加法分類(lèi),類(lèi)類(lèi)獨(dú)立;乘法分步,步步相關(guān)。2、排列數(shù)公式是:=; 排列數(shù)與組合數(shù)的關(guān)系是: 組合數(shù)公式是:=; 組合數(shù)性質(zhì):= += =3、 二項(xiàng)式定理: 二項(xiàng)展開(kāi)式的通項(xiàng)公式: 八、 解析幾何1、 沙爾公式:2、 數(shù)軸上兩點(diǎn)間距離公式:3、 直角坐標(biāo)平面內(nèi)的兩點(diǎn)間距離公式: 4、 若點(diǎn)P分有向線段成定比,則=5、 若點(diǎn),點(diǎn)P分有向線段成定比,則:=; = = 若,則ABC的重心G的坐標(biāo)是。6、求直線斜率的定義式為k=,兩點(diǎn)式為k=。7、直線方程的幾種形式:點(diǎn)斜式:, 斜截式: 兩點(diǎn)式:,
8、 截距式: 一般式: 經(jīng)過(guò)兩條直線的交點(diǎn)的直線系方程是:8、 直線,則從直線到直線的角滿足:直線與的夾角滿足:直線,則從直線到直線的角滿足:直線與的夾角滿足:9、 點(diǎn)到直線的距離:10、兩條平行直線距離是11、圓的標(biāo)準(zhǔn)方程是:圓的一般方程是:其中,半徑是,圓心坐標(biāo)是思考:方程在和時(shí)各表示怎樣的圖形?12、若,則以線段AB為直徑的圓的方程是 經(jīng)過(guò)兩個(gè)圓, 的交點(diǎn)的圓系方程是: 經(jīng)過(guò)直線與圓的交點(diǎn)的圓系方程是:13、圓為切點(diǎn)的切線方程是一般地,曲線為切點(diǎn)的切線方程是:。例如,拋物線的以點(diǎn)為切點(diǎn)的切線方程是:,即:。注意:這個(gè)結(jié)論只能用來(lái)做選擇題或者填空題,若是做解答題,只能按照求切線方程的常規(guī)過(guò)程
9、去做。14、研究圓與直線的位置關(guān)系最常用的方法有兩種,即: 判別式法:>0,=0,<0,等價(jià)于直線與圓相交、相切、相離; 考查圓心到直線的距離與半徑的大小關(guān)系:距離大于半徑、等于半徑、小于半徑,等價(jià)于直線與圓相離、相切、相交。15、拋物線標(biāo)準(zhǔn)方程的四種形式是:16、拋物線的焦點(diǎn)坐標(biāo)是:,準(zhǔn)線方程是:。 若點(diǎn)是拋物線上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離(稱為焦半徑)是:,過(guò)該拋物線的焦點(diǎn)且垂直于拋物線對(duì)稱軸的弦(稱為通徑)的長(zhǎng)是:。17、橢圓標(biāo)準(zhǔn)方程的兩種形式是:和。18、橢圓的焦點(diǎn)坐標(biāo)是,準(zhǔn)線方程是,離心率是,通徑的長(zhǎng)是。其中。19、若點(diǎn)是橢圓上一點(diǎn),是其左、右焦點(diǎn),則點(diǎn)P的焦半徑的
10、長(zhǎng)是和。20、雙曲線標(biāo)準(zhǔn)方程的兩種形式是:和。21、雙曲線的焦點(diǎn)坐標(biāo)是,準(zhǔn)線方程是,離心率是,通徑的長(zhǎng)是,漸近線方程是。其中。22、與雙曲線共漸近線的雙曲線系方程是。與雙曲線共焦點(diǎn)的雙曲線系方程是。23、若直線與圓錐曲線交于兩點(diǎn)A(x1,y1),B(x2,y2),則弦長(zhǎng)為 ; 若直線與圓錐曲線交于兩點(diǎn)A(x1,y1),B(x2,y2),則弦長(zhǎng)為 。 24、圓錐曲線的焦參數(shù)p的幾何意義是焦點(diǎn)到準(zhǔn)線的距離,對(duì)于橢圓和雙曲線都有:。25、平移坐標(biāo)軸,使新坐標(biāo)系的原點(diǎn)在原坐標(biāo)系下的坐標(biāo)是(h,k),若點(diǎn)P在原坐標(biāo)系下的坐標(biāo)是在新坐標(biāo)系下的坐標(biāo)是,則=,=。九、 極坐標(biāo)、參數(shù)方程1、 經(jīng)過(guò)點(diǎn)的直線參數(shù)方
11、程的一般形式是:。2、 若直線經(jīng)過(guò)點(diǎn),則直線參數(shù)方程的標(biāo)準(zhǔn)形式是:。其中點(diǎn)P對(duì)應(yīng)的參數(shù)t的幾何意義是:有向線段的數(shù)量。若點(diǎn)P1、P2、P是直線上的點(diǎn),它們?cè)谏鲜鰠?shù)方程中對(duì)應(yīng)的參數(shù)分別是則:;當(dāng)點(diǎn)P分有向線段時(shí),;當(dāng)點(diǎn)P是線段P1P2的中點(diǎn)時(shí),。3、圓心在點(diǎn),半徑為的圓的參數(shù)方程是:。3、 若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為直角坐標(biāo)為,則,。4、 經(jīng)過(guò)極點(diǎn),傾斜角為的直線的極坐標(biāo)方程是:,經(jīng)過(guò)點(diǎn),且垂直于極軸的直線的極坐標(biāo)方程是:,經(jīng)過(guò)點(diǎn)且平行于極軸的直線的極坐標(biāo)方程是:,經(jīng)過(guò)點(diǎn)且傾斜角為的直線的極坐標(biāo)方程是:。5、 圓心在極點(diǎn),半徑為r的圓的極坐標(biāo)方程是
12、;圓心在點(diǎn)的圓的極坐標(biāo)方程是;圓心在點(diǎn)的圓的極坐標(biāo)方程是;圓心在點(diǎn),半徑為的圓的極坐標(biāo)方程是。6、 若點(diǎn)M、N,則。十、 立體幾何1、求二面角的射影公式是,其中各個(gè)符號(hào)的含義是:是二面角的一個(gè)面內(nèi)圖形F的面積,是圖形F在二面角的另一個(gè)面內(nèi)的射影,是二面角的大小。2、若直線在平面內(nèi)的射影是直線,直線m是平面內(nèi)經(jīng)過(guò)的斜足的一條直線,與所成的角為,與m所成的角為, 與m所成的角為,則這三個(gè)角之間的關(guān)系是。3、體積公式: 柱體:,圓柱體:。 斜棱柱體積:(其中,是直截面面積,是側(cè)棱長(zhǎng)); 錐體:,圓錐體:。 臺(tái)體:, 圓臺(tái)體: 球體:。4、 側(cè)面積:直棱柱側(cè)面積:,斜棱柱側(cè)面積:;正棱錐側(cè)面積:,正棱臺(tái)側(cè)面積:;圓柱側(cè)面積:,圓錐側(cè)面積:,圓臺(tái)側(cè)面積:,球的表面積:。 5、幾個(gè)基本公式: 弧長(zhǎng)公式:(是圓心角的弧度數(shù),>0); 扇形面積公式:; 圓錐側(cè)面展開(kāi)圖(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 言語(yǔ)康復(fù)練習(xí)試題
- 2025年合肥幼兒師范高等專(zhuān)科學(xué)校單招職業(yè)傾向性測(cè)試題庫(kù)學(xué)生專(zhuān)用
- 2025河北省安全員-C證考試題庫(kù)
- 幼兒園開(kāi)學(xué)典禮方案2022范文
- 環(huán)保理念下的建筑設(shè)計(jì)創(chuàng)新與實(shí)踐
- 產(chǎn)業(yè)轉(zhuǎn)移練習(xí) 高中地理人教版(2019)選擇性必修2
- 2025年河北對(duì)外經(jīng)貿(mào)職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)1套
- 2025年冀中職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)完整版
- Unit+3+Times+change!+Understanding+ideas+學(xué)案 高中英語(yǔ)外研版(2019)選擇性必修第二冊(cè)
- 2025年河南省漯河市單招職業(yè)傾向性測(cè)試題庫(kù)參考答案
- 高二數(shù)學(xué)(含創(chuàng)意快閃特效)-【開(kāi)學(xué)第一課】2023年高中秋季開(kāi)學(xué)指南之愛(ài)上數(shù)學(xué)課
- 《學(xué)前兒童社會(huì)教育》學(xué)前兒童社會(huì)教育概述-pp課件
- 全國(guó)醫(yī)學(xué)英語(yǔ)統(tǒng)考醫(yī)學(xué)英語(yǔ)詞匯表
- 【品牌建設(shè)研究國(guó)內(nèi)外文獻(xiàn)綜述5000字】
- 國(guó)家電網(wǎng)公司電力安全工作規(guī)程(電力通信部分)(試行)
- 第八版-精神分裂癥及其他精神病性障礙(中文)
- 小學(xué)一年級(jí)新生報(bào)名登記表
- 生態(tài)毒理學(xué)第三章毒物的分子效應(yīng)與毒理學(xué)機(jī)制
- 智能財(cái)務(wù)共享在京東的應(yīng)用研究
- 衛(wèi)生和微生物基礎(chǔ)知識(shí)培訓(xùn)-
- 2023年鎮(zhèn)江市高等專(zhuān)科學(xué)校單招綜合素質(zhì)題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論