D10_3三重積分柱面坐標(biāo)與球面坐標(biāo)計(jì)算_第1頁
D10_3三重積分柱面坐標(biāo)與球面坐標(biāo)計(jì)算_第2頁
D10_3三重積分柱面坐標(biāo)與球面坐標(biāo)計(jì)算_第3頁
D10_3三重積分柱面坐標(biāo)與球面坐標(biāo)計(jì)算_第4頁
D10_3三重積分柱面坐標(biāo)與球面坐標(biāo)計(jì)算_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第三節(jié)一、三重積分的概念三重積分的概念 二、三重積分的計(jì)算二、三重積分的計(jì)算機(jī)動 目錄 上頁 下頁 返回 結(jié)束 三重積分的概念與計(jì)算 第十章 一、三重積分的概念一、三重積分的概念 類似二重積分解決問題的思想, 采用kkkkv),( ),(kkkkv引例引例: 設(shè)在空間有限閉區(qū)域 內(nèi)分布著某種不均勻的物質(zhì),),(Czyx求分布在 內(nèi)的物質(zhì)的可得nk 10limM“大化小大化小, 常代變常代變, 近似和近似和, 求極限求極限”解決方法解決方法:質(zhì)量 M .密度函數(shù)為機(jī)動 目錄 上頁 下頁 返回 結(jié)束 定義定義. 設(shè),),( , ),(zyxzyxfkkknkkvf),(lim10存在,),(zyx

2、fvzyxfd),(稱為體積元素體積元素, vd.dddzyx若對 作任意分割任意分割: 任意取點(diǎn)任意取點(diǎn)則稱此極限為函數(shù)在上的三重積分三重積分.在直角坐標(biāo)系下常寫作三重積分的性質(zhì)與二重積分相似.性質(zhì)性質(zhì): 例如 ),2,1(nkvk,),(kkkkv下列“乘中值定理中值定理.),(zyxf設(shè)在有界閉域 上連續(xù),則存在,),(使得vzyxfd),(Vf),(V 為 的體積, 積和式” 極限記作記作機(jī)動 目錄 上頁 下頁 返回 結(jié)束 二、三重積分的計(jì)算二、三重積分的計(jì)算1. 利用直角坐標(biāo)計(jì)算三重積分利用直角坐標(biāo)計(jì)算三重積分方法方法1 . 投影法 (“先一后二”)方法方法2 . 截面法 (“先二后

3、一”) 方法方法3 . 三次積分法 ,0),(zyxf先假設(shè)連續(xù)函數(shù) 并將它看作某物體 通過計(jì)算該物體的質(zhì)量引出下列各計(jì)算最后, 推廣到一般可積函數(shù)的積分計(jì)算. 的密度函數(shù) , 方法:機(jī)動 目錄 上頁 下頁 返回 結(jié)束 zxyDDyxdd 方法方法1. 投影法投影法 (“先一后二先一后二” ) Dyxyxzzyxz),(),(),(:21yxzzyxfyxzyxzddd),(),(),(21該物體的質(zhì)量為vzyxfd),(),(),(21d),(yxzyxzzzyxfDyxzyxzzzyxfyx),(),(21d),(ddyxzyxfdd),(細(xì)長柱體微元的質(zhì)量為),(2yxzz ),(1yx

4、zz yxdd微元線密度記作機(jī)動 目錄 上頁 下頁 返回 結(jié)束 ab方法方法2. 截面法截面法 (“先二后一先二后一”)bzaDyxz),(:為底, d z 為高的柱形薄片質(zhì)量為zD以xyz該物體的質(zhì)量為vzyxfd),(baZDyxzyxfdd),(ZDbayxzyxfzdd),(dzdzzDzDyxzyxfdd),(zzyxfd),(面密度zd記作機(jī)動 目錄 上頁 下頁 返回 結(jié)束 投影法方法方法3. 三次積分法三次積分法設(shè)區(qū)域:利用投影法結(jié)果 ,bxaxyyxyDyx)()(:),(21),(),(21yxzzyxz把二重積分化成二次積分即得:vzyxfd),(),(),(21d),(d

5、dyxzyxzDzzyxfyxvzyxfd),(),(),(21d),(yxzyxzzzyxf)()(21dxyxyybaxd機(jī)動 目錄 上頁 下頁 返回 結(jié)束 當(dāng)被積函數(shù)在積分域上變號時, 因?yàn)?,(zyxf2),(),(zyxfzyxf),(1zyxf),(2zyxf均為非負(fù)函數(shù)根據(jù)重積分性質(zhì)仍可用前面介紹的方法計(jì)算.2),(),(zyxfzyxf機(jī)動 目錄 上頁 下頁 返回 結(jié)束 小結(jié)小結(jié): 三重積分的計(jì)算方法三重積分的計(jì)算方法方法方法1. “先一后二先一后二”方法方法2. “先二后一先二后一”方法方法3. “三次積分三次積分”),(),(21d),(ddyxzyxzDzzyxfyxvz

6、yxfd),(ZDbayxzyxfzdd),(d),(),()()(2121d),(ddyxzyxzxyxybazzyxfyx具體計(jì)算時應(yīng)根據(jù)vzyxfd),(vzyxfd),(三種方法(包含12種形式)各有特點(diǎn),被積函數(shù)及積分域的特點(diǎn)靈活選擇. 機(jī)動 目錄 上頁 下頁 返回 結(jié)束 oxyz2. 利用柱坐標(biāo)計(jì)算三重積分利用柱坐標(biāo)計(jì)算三重積分 ,R),(3zyxM設(shè),代替用極坐標(biāo)將yx),z(則就稱為點(diǎn)M 的柱坐標(biāo).z200sinyzz cosx直角坐標(biāo)與柱面坐標(biāo)的關(guān)系:常數(shù)坐標(biāo)面分別為圓柱面常數(shù)半平面常數(shù)z平面oz),(zyxM)0 ,(yx機(jī)動 目錄 上頁 下頁 返回 結(jié)束 如圖所示, 在柱

7、面坐標(biāo)系中體積元素為zzdddzvdddd因此zyxzyxfddd),(),(zF其中),sin,cos(),(zfzF適用范圍適用范圍:1) 積分域積分域表面用柱面坐標(biāo)表示時方程簡單方程簡單 ;2) 被積函數(shù)被積函數(shù)用柱面坐標(biāo)表示時變量互相分離變量互相分離.zdddxyzodd機(jī)動 目錄 上頁 下頁 返回 結(jié)束 其中為由例例3. 計(jì)算三重積分zyxyxzddd22xyx2220),0(, 0yaazz所圍解解: 在柱面坐標(biāo)系下:cos202ddcos342032acos2020az 0及平面2axyzozvdddd20dazz0dzzddd2原式398a柱面cos2成半圓柱體.機(jī)動 目錄 上

8、頁 下頁 返回 結(jié)束 o oxyz例例4. 計(jì)算三重積分解解: 在柱面坐標(biāo)系下h:hz42dhdh2022)4(124)41ln()41(4hhhhz h2020h202d120d,1ddd22yxzyxzyx422)0( hhz所圍成 .與平面其中由拋物面42rzvdddd原式 =機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例1 1 計(jì)算計(jì)算 zdxdydzI,其中,其中 是球面是球面 4222 zyx與拋物面與拋物面zyx322 所圍的立體所圍的立體.解解由由 zzryrx sincos, zrzr34222, 3, 1 rz知交線為知交線為 23242030rrzdzrdrdI.413 面面上

9、上,如如圖圖,投投影影到到把把閉閉區(qū)區(qū)域域xoy .20, 3043:22 rrzr,例例計(jì)計(jì)算算 dxdydzyxI)(22, 其其中中 是是曲曲線線 zy22 ,0 x 繞繞oz軸軸旋旋轉(zhuǎn)轉(zhuǎn)一一周周而而成成的的曲曲面面與與兩兩平平面面, 2 z8 z所所圍圍的的立立體體.解解由由 022xzy 繞繞 oz 軸旋轉(zhuǎn)得,軸旋轉(zhuǎn)得,旋旋轉(zhuǎn)轉(zhuǎn)面面方方程程為為,222zyx 所圍成的立體如圖,所圍成的立體如圖, :2D, 422 yx.222020:22 zrr:1D,1622 yx,824020:21 zrr所圍成立體的投影區(qū)域如圖所圍成立體的投影區(qū)域如圖, 2D1D,)()(21222221 d

10、xdydzyxdxdydzyxIII 12821DrfdzrdrdI,345 22222DrfdzrdrdI,625 原式原式 I 345 625 336. 82402022rdzrrdrd 22202022rdzrrdrd3. 利用球坐標(biāo)計(jì)算三重積分利用球坐標(biāo)計(jì)算三重積分 ,R),(3zyxM設(shè)),(z其柱坐標(biāo)為就稱為點(diǎn)M 的球坐標(biāo).直角坐標(biāo)與球面坐標(biāo)的關(guān)系,ZOMMoxyzzr),(r則0200rcossinrx sinsinry cosrz 坐標(biāo)面分別為常數(shù)r球面常數(shù)半平面常數(shù)錐面, rOM 令),(rMsinrcosrz 機(jī)動 目錄 上頁 下頁 返回 結(jié)束 xyzo如圖所示, 在球面坐

11、標(biāo)系中體積元素為ddrrddddsind2rrv 因此有zyxzyxfddd),(),(rF其中)cos,sinsin,cossin(),(rrrfrF適用范圍適用范圍:1) 積分域積分域表面用球面坐標(biāo)表示時方程簡單方程簡單;2) 被積函數(shù)被積函數(shù)用球面坐標(biāo)表示時變量互相分離變量互相分離.dddsin2rrd機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例5. 計(jì)算三重積分,)(222zdydxdzyx22yxz為錐面2222Rzyx解解: 在球面坐標(biāo)系下:zyxzyxddd)(222所圍立體.40Rr 020其中 與球面dddsind2rrv Rrr04d)22(515R40dsin20dxyzo4

12、Rr 機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例6.求曲面)0()(32222azazyx所圍立體體積.解解: 由曲面方程可知, 立體位于xoy面上部,cos0:3ar 利用對稱性, 所求立體體積為vVdrrad3cos02dcossin32203a331a3cosar ,202020dsin20d4yoz面對稱, 并與xoy面相切, 故在球坐標(biāo)系下所圍立體為且關(guān)于 xoz dddsind2rrv yzxar機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例 3 3 計(jì)計(jì)算算 dxdydzyxI)(22,其其中中 是是錐錐面面222zyx , 與與平平面面az )0( a所所圍圍的的立立體體.解解 1 采

13、采用用球球面面坐坐標(biāo)標(biāo)az ,cos ar222zyx ,4 ,20,40,cos0: ar dxdydzyxI)(22drrdda 40cos03420sin da)0cos(51sin255403.105a 解解 2 采采用用柱柱面面坐坐標(biāo)標(biāo) ,:222ayxD dxdydzyxI)(22 aradzrrdrd2020 adrrar03)(254254aaa .105a 222zyx , rz ,20,0,: arazr例例 4 4 求求曲曲面面22222azyx 與與22yxz 所所圍圍 成成的的立立體體體體積積.解解 由由錐錐面面和和球球面面圍圍成成,采用球面坐標(biāo),采用球面坐標(biāo),由由2

14、2222azyx ,2ar 22yxz ,4 ,20,40,20: ar由由三三重重積積分分的的性性質(zhì)質(zhì)知知 dxdydzV, adrrddV202020sin4 4033)2(sin2da.)12(343a 內(nèi)容小結(jié)內(nèi)容小結(jié)zyxdddzddddddsin2rr積分區(qū)域多由坐標(biāo)面被積函數(shù)形式簡潔, 或坐標(biāo)系 體積元素 適用情況直角坐標(biāo)系柱面坐標(biāo)系球面坐標(biāo)系* * 說明說明:三重積分也有類似二重積分的換元積分公式換元積分公式:),(),(wvuzyxJ對應(yīng)雅可比行列式為*ddd),(ddd),(wvuJwvuFzyxzyxf變量可分離.圍成 ;機(jī)動 目錄 上頁 下頁 返回 結(jié)束 2,zxz1.

15、 將. )(),(Czyxf用三次積分表示,2,0 xx,42, 1yxyvzyxfId),(其中由所提示提示:20 xxy21212 zxI2d),(xzzyxf xy2121d20dx思考與練習(xí)思考與練習(xí)六個平面圍成 ,:機(jī)動 目錄 上頁 下頁 返回 結(jié)束 2. 設(shè), 1:222zyx計(jì)算vzyxzyxzd1) 1ln(222222提示提示: 利用對稱性原式 = 122ddyxyx0奇函數(shù)222211222222d1) 1ln(yxyxzzyxzyxz機(jī)動 目錄 上頁 下頁 返回 結(jié)束 zoxy23. 設(shè)由錐面22yxz和球面4222zyx所圍成 , 計(jì)算.d)(2vzyxI提示提示:4利用對稱性vzyxd)(222vzxzyyxzyxId)222(222用球坐標(biāo) rr d420dsin4020d221564機(jī)動 目錄 上頁 下頁 返回 結(jié)束 備用題備用題 1. 計(jì)算,ddd12zyxxyI所圍成. 其中 由1,1,12222yzxzxy分析分析:若用“先二后一”, 則有zxxyyIyDdd1d201zxxyyyDdd1d210計(jì)算較繁! 采用“三次積分”較好.1zxy1o1機(jī)動 目錄 上頁 下頁 返回 結(jié)束 :4528 1122yzx2211xzx11x1zxy1o1xxId1211zxxd22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論