中國有源相控陣技術(shù)發(fā)展?fàn)顩r和戰(zhàn)略影響_第1頁
中國有源相控陣技術(shù)發(fā)展?fàn)顩r和戰(zhàn)略影響_第2頁
中國有源相控陣技術(shù)發(fā)展?fàn)顩r和戰(zhàn)略影響_第3頁
中國有源相控陣技術(shù)發(fā)展?fàn)顩r和戰(zhàn)略影響_第4頁
中國有源相控陣技術(shù)發(fā)展?fàn)顩r和戰(zhàn)略影響_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、The Technological Maturity of Chinese AESA Technology & Strategic Impacts中國有源相控陣技術(shù)發(fā)展?fàn)顩r及其戰(zhàn)略影響Image 1: APG-63(V)2 radar installed on an F-15C. The APG-63(V)2 was the first fighter mounted AESA radar to enter service worldwide. The first American F-15C unit to receive the new radars were stationed

2、at Elmendorf in 2000. In comparison, the first European AESA entered operational service in 2012 and the first Russian AESA equipped fighters (Mig-35) will not enter service until 2016. The initial US technological lead in AESA technology is attributable to substantial investments made in the late s

3、tages of the Cold War. 圖1:裝備F-15C的APG-63(V)2型雷達(dá)。APG-63(V)2是世界圍最先裝備戰(zhàn)斗機(jī)并投入使用的雷達(dá)。位于埃爾門多的美國F-15C單位夫于2000年最先接收該新型雷達(dá)。相比較而言,歐洲最早列裝使用AESA雷達(dá)的時間是2012年,而俄羅斯的Mig-35戰(zhàn)斗機(jī)于2016年前不會裝備AESA雷達(dá)。美國在AESA技術(shù)上的領(lǐng)導(dǎo)地位,完全得益于冷戰(zhàn)后期的巨額投資。Author's Note: During the research process on the J-31s avionics (for the upcoming Thre

4、at Analysis of Foreign Stealth Fighters:J-31 Part II), it became apparent that very few credible, verifiable, and non-speculative English based source materials existed on the subject of PLA fighter radars. Basic information, such the proper name or designation of a radar system is utilized by a par

5、ticular fighter often varies between sources; performance figures associated with domestically produced radars is even harder to verify. This article's intent was to compile a wide variety of information on expected future developments in Chinese actively scanned electronic array (AESA) radars.

6、Furthermore, the current “Threat Analysis of Foreign Stealth Fighters: Part I Chengdu J-20” is largely dated with respect to developments with the J-20s avionics suite and this article subsequently provides more up-to-date information on the J-20s AESA. 作者注:在J-31航空電子設(shè)備研制過程中(在國外隱身戰(zhàn)機(jī)威脅分析第二部分:飛J-3

7、1中將進(jìn)行說明),目前尚沒有多少足夠可信,或經(jīng)證實(shí),以及非投機(jī)性的解放軍戰(zhàn)斗機(jī)雷達(dá)資料。一些基礎(chǔ)信息,例如裝備特定戰(zhàn)斗機(jī)的雷達(dá)系統(tǒng)的名稱或型號與其生產(chǎn)廠商有關(guān);中國國產(chǎn)雷達(dá)的性能參數(shù)很難被證實(shí)。本文的主要目的在于收集匯總有關(guān)中國有源相控陣?yán)走_(dá)未來發(fā)展方向的廣泛大量信息。此外,當(dāng)前國外隱身戰(zhàn)機(jī)威脅分析第一部分:成飛J-20中已經(jīng)對J-20的航電系統(tǒng)的發(fā)展?fàn)顟B(tài)進(jìn)行了大量描述,本文隨后將提供有關(guān)J-20有源相控陣?yán)走_(dá)發(fā)展的最新信息。AESA radars represent a significant increase in detection power, reliability, and ele

8、ctronic warfare capabilities when compared to older electronically scanned arrays (ESA) and mechanically scanned arrays (MSA). This article largely focus on more technical aspects of AESAs but the basics of AESAs are cogently detailed by Karlo Kopp in "Active Electronically Steered Arrays A Mat

9、uring Technology".對比較早的電子掃描陣列(無源相控陣)雷達(dá)和機(jī)械掃描雷達(dá),有源相控陣?yán)走_(dá)具有在探測性能、可靠性和電子戰(zhàn)方面均有大幅提升。本文主要關(guān)注AESA技術(shù),但該技術(shù)的更詳細(xì)描述可參考Karlo Kopp的有源相控陣列一個成熟的技術(shù)一文。Three main determinants dictate the maximum number of transmit receiver modules a fighter radar can accommodate: the volume of the aircrafts nose, the technological

10、maturity of the firm/countrys T/R module packaging technology, and the effectiveness of the radar's thermal management system(s). The volume of the nose is a fairly intuitive constraint, the larger an aircrafts nose is, the larger the radar can be. For example, the F-15Cs nose cone is able to ac

11、commodate the much larger 1,500 T/R element APG-63V(3) radar vs. the F-16C Block 60 with its comparatively smaller nose cone and its 1,000 T/R element APG-80 AESA. Packaging technology refers to how many individual T/R modules can be installed within the finite space usually accomplished by reductio

12、ns in size of the individual T/R modules. The more technologically advanced a firms T/R packaging technology is, the smaller the individual T/R modules will be resulting in an increase density of the layout of T/R modules within the array. Thus, advancements in packaging technology enable engineers

13、to accommodate more T/R modules within the fixed volume of the aircraft's nose.三個主要因素決定了戰(zhàn)斗機(jī)雷達(dá)可容納的T/R組件數(shù)量:飛機(jī)機(jī)頭的容積容量、T/R組件封裝技術(shù)的成熟度,以及雷達(dá)的熱管理系統(tǒng)的工作效率。機(jī)頭部位的容積是一個相當(dāng)直觀的約束條件,飛機(jī)鼻錐部位容積越大,雷達(dá)(天線陣面)越大。例如:F-15C的機(jī)頭鼻錐可容納具有1500個T/R組件的APG-63V(3)雷達(dá),而F-16C Block 60只能容納具有1000個T/R組件的APG-80雷達(dá)。通過減小單個T/R組件的體積,封裝技術(shù)決定了再固定的

14、空間可容納的最大T/R組件數(shù)量。更加先進(jìn)的封裝技術(shù)可制造體積更小的T/R組件,從而提高了陣面上的T/R組件布局密度。因此,在封裝技術(shù)上的進(jìn)步,將允許工程師們在固定的飛機(jī)鼻錐空間里布置更多的T/R組件。Image 2: US early production quad packed transmit receiver modules. The United States no longer produces quad channel T/R modules and has since produced single T/R module designs. Less advanced AESAs

15、such as the Zhuk-AE utilize multi-T/R channel designs, it is possible China's first generation of AESAs also utilize a multi-T/R channel design.圖2:早期美國制造的4聯(lián)裝T/R組件。美國不再制造4聯(lián)裝T/R組件,轉(zhuǎn)而制造獨(dú)立封裝的T/R組件。少數(shù)先進(jìn)AESA系統(tǒng),例如:Zhuk-AE雷達(dá),使用多聯(lián)裝T/R組件封裝技術(shù),中國第一代AESA系統(tǒng)可能也使用了多聯(lián)裝T/R組件設(shè)計(jì)。Lastly, thermal management systems a

16、re instrumental for the operation of high power AESA radars. Unlike MSA systems, air cooling systems are insufficient to prevent heat related system failures and frequent maintenance issues:最后,熱管理系統(tǒng)在高功耗AESA雷達(dá)中起到關(guān)鍵作用。與機(jī)械掃描(MSA)系統(tǒng)不同,風(fēng)冷散熱系統(tǒng)不足以防止散熱相關(guān)的系統(tǒng)故障以及由其引起的頻繁維修費(fèi)用:“Due to the behavior of microwave t

17、ransistor amplifiers, the power efficiency of a TR module transmitter is typically less than 45%. As a result, an AESA will dissipate a lot of heat which must be extracted to prevent the transmitter chips becoming molten pools of Gallium Arsenide - reliability of GaAs MMIC chips improves the cooler

18、they are run. Traditional air cooling used in most established avionic hardware is ill suited to the high packaging density of an AESA, as a result of which modern AESAs are liquid cooled.US designs employ a polyalphaolefin (PAO) coolant similar to a synthetic hydraulic fluid. A typical liquid cooli

19、ng system will use pumps to drive the coolant through channels in the antenna, and then route it to a heat exchanger. That might be an air cooled core (radiator style) or an immersed heat exchanger in a fuel tank - with a second liquid cooling loop to dump heat from the fuel tank. In comparison with

20、 a conventional air cooled fighter radar, the AESA will be more reliable but will require more electrical power and more cooling, and typically can produce much higher transmit power if needed for greater target detection range performance (increasing transmitted power has the drawback of increasing

21、 the footprint over which a hostile ESM or RWR can detect the radar” Kopp, 2014“由于微波發(fā)射放大器的特性,T/R組件中發(fā)射部分的用電效率典型值小于45%。因此,AESA系統(tǒng)工作期間所產(chǎn)生的大量熱量需要耗散,以避免發(fā)射部分芯片變?yōu)樯榛墶叭蹱t”高可靠性的砷化鎵微波單片集成電路需配備更佳的散熱器。在眾多已裝備的航電機(jī)載設(shè)備中所使用的傳統(tǒng)風(fēng)冷技術(shù),并不適用于高密度封裝的AESA系統(tǒng),因此,現(xiàn)代AESA系統(tǒng)采用液冷技術(shù)。美國設(shè)計(jì)研發(fā)的聚-烯烴(PAO)冷卻液是一種合成液壓液。典型的液冷系統(tǒng)往往采用一個液壓泵驅(qū)動冷卻液在天線

22、的散熱管道中流動,并最終通過冷卻液將熱量傳遞給熱交換機(jī)。這種熱交換機(jī)可以是類似汽車引擎散熱器的風(fēng)冷器,也可以是安放在油箱中的浸入式熱交換器。相比較傳統(tǒng)風(fēng)冷戰(zhàn)斗機(jī)雷達(dá)而言,AESA系統(tǒng)將更加可靠,但同時需要更高的功耗和更苛刻的散熱需求,通過發(fā)射更高功率電磁波信號,就可以獲得更遠(yuǎn)的目標(biāo)探測距離性能(但更高的發(fā)射功率同樣意味著雷達(dá)系統(tǒng)可能更早被敵方ESM或RWR設(shè)備偵測而暴露)?!?Kopp,2014。Image 3:The image which allegedly describes the number of TR modules within the J-10B, J-16, and J-2

23、0 has been posted on numerous defense forums since at least December of 2013.圖3:該圖展示了截止2013年12月前在眾多軍事防御論壇廣泛登載的J-10B、J-16和J-20上AESA系統(tǒng)的T/R組件數(shù)量。Chinese defense forums have posted copies of the image above which claim to cite the J-20s AESA T/R module count at 1,856, the J-16s at 1,760, and the J-10B at

24、 1,200 T/R modules. It is likely the J-10B is the first Chinese fighter aircraft to feature an AESA; J-10B units achieved initial operational capability (IOC) in October of 2014. The volume of the J-10s nose cone is not substantially different from that of the F-16 or the Israeli Lavi from which the

25、 J-10 is partially based. Therefore, if one were to assume China had reached parity with the United States in packaging technology, the 1,200 T/R module figure would be plausible but slightly high. For comparison, the APG-80 AESA for the F-16C/D Block 60 has 1,000 T/R modules (DSB, 2001). However, i

26、t is unlikely that China has been able to reach parity with the United States in terms of packaging technology on their first generation AESA design. Neither Russia nor Israel was able to field 1,000 T/R element arrays within their first generation fighter mounted AESAs for similar nose volumes as t

27、he F-16 with the Mig-35 and Israeli F-16 respectively.中國軍事防御論壇上登載了圖片的副本,圖片聲稱J-20的AESA系統(tǒng)T/R組件數(shù)量為1856個,J-16為1760個,J-10B為1200個。J-10B飛機(jī)可能是首款使用AESA系統(tǒng)的中國國產(chǎn)戰(zhàn)斗機(jī);J-10B單位在2014年10月形成初步作戰(zhàn)能力(IOC)。J-10飛機(jī)的鼻錐部位空間與F-16類同,或被J-10部分借鑒設(shè)計(jì)的以色列“獅”戰(zhàn)機(jī)。因此,如果有人假設(shè)中國已經(jīng)在封裝技術(shù)方面已經(jīng)或部分達(dá)到美國的水平,那么1200個T/R組件的數(shù)字可信度值得商榷,或至少略微被夸大了。作為比較,配裝F

28、-16C/D Block 60的APG-80 AESA雷達(dá)系統(tǒng)擁有1000個T/R組件(美國國防科技局,2001)。然而,中國在第一代AESA系統(tǒng)設(shè)計(jì)時的封裝技術(shù)似乎不可能達(dá)到美國同期水平。無論是俄羅斯還是以色列,以與F-16機(jī)頭鼻錐容積相類似的Mig-35和以色列F-16,在其第一代AESA雷達(dá)系統(tǒng)中均未能放置1000個T/R組件。Russias first fighter mounted AESA radar, the Zhuk-AE, contained 652 T/R modules and was unveiled in 2007. The Israeli ELM-2052 AESA

29、 radar, which has been marketed for both the F-16 and the FA-50 a joint Korean Aerospace Industry and Lockheed Martin F-16 derivative, has roughly 512 T/R modules (Trimble, 2014). The only firm outside of the United States that was able to produce a 1,000 T/R element within one generation was the Fr

30、ench avionics firm Thales with its RB2E radar (Avionics Today, 2009). While the relative technological maturity of European, Israeli, and Russian AESAs is not directly indicative of the relative technological maturity of Chinas packaging technology, it is an indicator that the first generation AESA

31、produced by China is likely not on par with the US which is generally recognized as having the most technological mature T/R packaging technology (Kopp, 2014).俄羅斯首款裝備戰(zhàn)斗機(jī)的AESA雷達(dá)Zhuk-AE,包含652個T/R組件,并在2007年首次公開亮相。以色列的ELM-2052 AESA雷達(dá),在F-16和FA-50戰(zhàn)斗機(jī)上都擁有一定市場(后者是國聯(lián)合航空工業(yè)集團(tuán)在洛克希德馬丁公司F-16上研發(fā)的一款戰(zhàn)機(jī)),據(jù)估計(jì),該型雷達(dá)擁有約5

32、12個T/R組件(Trimble公司,2014)。除美國本土公司外,只有法國航空業(yè)Thales公司在第一代AESA雷達(dá)(RB2E)上使用超過1000個T/R組件(Avionics Today雜志,2009)。雖然歐洲、以色列和俄羅斯的AESA雷達(dá)系統(tǒng)所采用的封裝技術(shù)水平并不能直接說明中國的封裝技術(shù)水平,但他們可作為參考,并說明在第一代AESA雷達(dá)系統(tǒng)中,中國不可能擁有與美國相同的技術(shù)水平,而美國被廣泛承認(rèn)是掌握最先進(jìn)專業(yè)T/R組件封裝技術(shù)的國家(Kopp,2014)。Image 4: T/R module count of US AESAs based upon the 2001 Defens

33、e Science Board report "Future DoD Airborne High-Frequency Radar Needs/Resources"(link provided in Source 1 citation, refer to page 6). Image Credit: Air Power Australia, 2008.圖4:美國AESA系統(tǒng)T/R組件數(shù)量,數(shù)據(jù)來自美國國防科學(xué)委員會2001年報(bào)告未來國防機(jī)載高頻雷達(dá)需求和資源。The prospect of Chinas TR packaging technology being on par

34、 with US firms within a single generation of radars is even more dubious when one examines the preference for an incremental technological development within the Chinese aerospace industry. Several Chinese aviation authors have hypothesized that the J-10B serves as a “technological stepping stone” w

35、ith respect to the development of the more advanced J-20. For example, Feng Cao argues the J-10B and the J-16 AESAs were likely used to test technology related to the J-20s AESA which would be a second generation Chinese design. By virtue of the larger nose volumes in the J-16 and J-20 airframes, it

36、 is highly probable the two aircraft will feature radars with more T/R modules than the J-10Bs radar. 通過參考中國航空工業(yè)的漸增性開發(fā)模式不難推測,在單獨(dú)一代雷達(dá)中,中國的封裝技術(shù)水平很難趕超美國同行。許多中國航空作家都預(yù)測,與更加先進(jìn)的J-20相比,J-10B只扮演了“技術(shù)墊腳石”的角色。比如:朝峰(音譯)認(rèn)為,J-10B和J-16的AESA系統(tǒng)為裝備J-20的AESA系統(tǒng)提供技術(shù)測試,而后者則是中國第二代有源相控雷達(dá)系統(tǒng)。憑借更寬敞的機(jī)頭鼻錐部分容量,J-16和J-20所裝備的AESA雷達(dá)

37、可能擁有比J-10B更多數(shù)量的T/R組件。The J-16 utilizes the Su-27BS airframe which has room for a 0.9-1.1 meter aperture in the nose which is on par with the F-15 and F-22 in terms of volume (Kopp, 2012). The 1,500 element N036 Tikhomirov NIIP AESA has a similar aperture size to the electronically scanned array (ESA

38、) Irbis-E radar featured in the Su-35 series of fighters which shares the base Su-27 airframe. If the 1,760 T/R figure is correct it would indicate the Chinese aerospace industry has eclipsed Russian T/R module packaging technology as the N036 is arguably the most advanced Russian fighter mounted AE

39、SA. Similarly, the most advanced US fighter mounted AESAs such as the APG-77(V)2 and APG-82(V)1 contain 1,500 T/R modules*. While the prospect of Chinese avionics firms reaching parity with US and Russian firms is more plausible within two generations of designs, the author is skeptical the 1,760 fi

40、gure is correct given the unsubstantiated nature of the image and the fairly substantial 260 T/R discrepancy between the J-16 radar figure compared to the most advanced US and Russian AESA designs. Therefore, the author speculates it would be more reasonable to assume a figure between 1,200 and 1,50

41、0 TR modules for the J-16 rather than the 1,760 figure.J-16采用了Su-27BS機(jī)身設(shè)計(jì),在機(jī)頭鼻錐部擁有約0.9m至1.1m的孔徑,從容量方面看,與F-15和F-22相同(Kopp,2012)。提赫米洛夫儀器制造研究院制造的N036 AESA雷達(dá)系統(tǒng)擁有1500個T/R組件,與電子掃描陣列(ESA)Irbis-E雷達(dá)(無源相控陣PESA)孔徑尺寸相似,后者在與Su-27機(jī)身結(jié)構(gòu)設(shè)計(jì)相仿的Su-35上使用。如果說裝備J-16的AESA雷達(dá)確實(shí)擁有1760個T/R組件,那么這將說明中國航空工業(yè)在T/R組件封裝技術(shù)方面已經(jīng)超越俄羅斯,因?yàn)镹

42、036雷達(dá)據(jù)信已是目前俄羅斯戰(zhàn)機(jī)裝備的最先進(jìn)AESA雷達(dá)系統(tǒng)。相類似地,最先進(jìn)的美式戰(zhàn)機(jī)所裝備的APG-77(V)2 和APG-82(V)1雷達(dá)同樣擁有約1500個T/R組件。通過兩代AESA系統(tǒng)設(shè)計(jì),中國航空工業(yè)技術(shù)水平趕超美國和俄羅斯同行的可能性值得懷疑,因此,作者懷疑1760個T/R組件的信息源于對未經(jīng)證實(shí)圖片的武斷猜測,因而造成了J-16 AESA系統(tǒng)比美國和俄羅斯最先進(jìn)AESA系統(tǒng)多260個T/R組件的說法。據(jù)此,作者推測,裝備J-16的AESA雷達(dá)系統(tǒng)大約擁有1200至1500個T/R組件,而不是網(wǎng)傳的1760個。Image 5: The sixth and most recent

43、 (as of January 2015) unveiled J-20 testing aircraft model "2015".圖5:最新曝光(2015年1月)的第六代J-20測試驗(yàn)證機(jī)(代號:2015)。The tentative designation for the J-20's AESA is the Type 1475. While the nose volume of the J-20 is certainly large, the jet overall is longer and heavier than the F-22, no credibl

44、e figures for nose volume were available at the time of this publication. As with the J-16 T/R figure, the J-20 figure is substantially greater than that of the most advanced US and Russian designs. Even if the Nanjing Research Institute of Electronics Technology (NRIET) or the China Leihua Electron

45、ic Technology Research Institute (607 Institute) was able to develop sufficient packaging technology that would enable 1,856 T/R modules within the J-20's nose, the density of the T/R modules would create significant cooling problems. For example, Phazotron's single greatest difficulty in de

46、signing the Zuk-AE was the AESA's thermal management system (Kopp, 2008). Without an effective cooling system, the Type 1475 would not be reliable at peak power output and would cause significant maintenance issues. Furthermore, with such a high number of T/R modules, the Type 1475 would be vuln

47、erable to radar warning receiver (RWR) systems such as the ALR-94 without a very capable low probability intercept (LPI) mode.J-20 AESA系統(tǒng)方案設(shè)計(jì)為1475型。J-20的機(jī)頭鼻錐空間比F-22更大,該款噴氣式飛機(jī)機(jī)身更長,重量更大,目前,尚未見有關(guān)于機(jī)頭鼻錐部位具體容量參數(shù)的相關(guān)報(bào)道。鑒于J-16的T/R組件數(shù)量,J-20的T/R組件應(yīng)該比當(dāng)前最先進(jìn)的美國和俄羅斯AESA雷達(dá)設(shè)計(jì)更多。即便電子技術(shù)研究所(NRIET)或中國雷華電子技術(shù)研究所(607研究所)擁有

48、足夠先進(jìn)的封裝技術(shù)將1856個T/R組件裝進(jìn)J-20的鼻子,如此密度的T/R組件結(jié)構(gòu)將造成嚴(yán)重的散熱問題。若不能有效解決散熱問題,1475型雷達(dá)將不能提供可靠的最大功率發(fā)射性能,并帶來重大的維護(hù)問題。此外,擁有如此大數(shù)量的T/R組件,使得1475型雷達(dá)很難使用低截獲模式,從而更容易被雷達(dá)告警接收機(jī)(RWR)系統(tǒng)偵獲,例如:ALR-94型RWR。Many discussions with respect to the "relative stealthiness" of fighter aircraft are limited to merely comparing rada

49、r cross section estimates while entirely neglecting alternate means of detecting aircraft such as RWRs or other emission locator systems. David Axe succinctly compares the process of how RWRs function to how a flash light carried by another person is easily visible in a dark room. AESAs emit a subst

50、antial amount of energy, especially designs with a greater number of T/R modules, which enables passive emission locator systems to detect an AESA. The addition of an LPI software for AESAs mitigates the risk of RWR detection.許多有關(guān)戰(zhàn)斗機(jī)“相對隱身性”的討論,只限于比較雷達(dá)截面積評估,而完全忽視了其他對空偵察手段,例如:雷達(dá)告警接收機(jī)(RWR)和其他輻射定位系統(tǒng)。David Axe將RWR的功能簡單類比為在黑暗房間中尋找一個隨身攜帶閃光燈的人。AESA系統(tǒng)輻射可觀的能量,特別是擁有更多數(shù)量T/R組件的AESA系統(tǒng),更容易向被動輻射定位系統(tǒng)暴露自己的位置。在AESA系統(tǒng)中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論