




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、1DOE-based Automatic Process Control with Consideration of Model UncertaintiesJan Shi and Jing ZhongThe University of MichiganC. F. Jeff WuGeorgia Institute of Technology2Outline Introduction DOE-based Automatic Process Control with Consideration of Model Uncertainty Process model Control objective
2、function Controller design strategies Simulation and case study Summary3Problem StatementProcess variation is mainly caused by the change of unavoidable noise factors.Process variation reduction is critical for process quality improvement. Offline Robust Parameter Design (RPD) used at the design sta
3、ge To set an optimal constant level for controllable factors that can ensure noise factors have a minimal influence on process responses Based on the noise distribution but not requiring online observations of noise factorsOnline Automatic Process Control (APC) during production With the increasing
4、usage of in-process sensing of noise factors, it will provide an opportunity to online adjust control factors to compensate the change of noise factors, which is expected to achieve a better performance than offline RPD.4Motivation of Using APCx=x1enoise distributiony(x,e)abeeOnline adjust X based o
5、n e2byxx 1ayxx x= x22ayxx 2byx x Offlinefix x=x2Offlinefix x=x11byxx 1ayxx ( , )yf x e5The Objective and Focus DOE-Based APC Design of Experiments(DOE)Automatic Process Control(APC)Statistical Process Control(SPC)The research focuses on the development of automatic process control (APC) methodologie
6、s based on DOE regression models and real-time measurement or estimation of noise factors for complex mfg processes6Literature ReviewFor complex discrete manufacturing processes, the relationship between the responses (outputs) and process variables (inputs) are obtained by DOE using a response surf
7、ace model, rather than using dynamic differential/difference equationsoffline robust parameter design (RPD) (Taguchi, 1986) Improve robust parameter design based on the exact level of the observed uncontrollable noise factors (Pledger,1996) Existing APC literature are mainly for automatic control of
8、 dynamic systems that are described by dynamic differential/difference equations.Certainty Equivalence Control (CEC) (Stengel, 1986): The controller design and state estimator design are conducted separately (The uncertainty of system states is not considered in the controller design) Cautious Contr
9、ol (CC) (Astrom and Wittenmark, 1995): The controller is designed by considering the system state estimation uncertainty, which is extremely difficult for a complex nonlinear dynamic system. Jin and Ding (2005) proposed Doe-Based APC concepts:considering on-line control with estimation of some noise
10、 factors.No interaction terms between noise and control factors in their model.7ObjectiveDevelop a general methodology for controller design based on a regression model with interaction terms.Investigate a new control law considering model parameter estimation uncertainties Compare the performances
11、of CC, CEC, and RPD, as well as performance with sensing uncertainties.8Methodology Development Procedures APC Using Regression Response Models Based on key process variableS1: Conduct DOE and process modelingObtain significant factors & estimated process model S2: Determine APC control strategy
12、 (considering model errors S3: Online adjust controllable factors S4: Control performance evaluationBased on observation uncertainty Based on process operation constraints on controller Use certainty equivalence controlor cautious control Obtain reduced process variation91. Process Variable Characte
13、rizationProcessVariablesControllableFactorsNoiseFactorsUnobservableNoise FactorsObservableNoise FactorsOff-line settingFactorsOn-line adjustableFactorsY= f (X, U, e, n)102. Control System FrameworkControllableFactors (x)ManufacturingProcessUnobservableNoise Factors (n)Observable Noise Factors (e)In-
14、ProcessSensing of eResponse (y)Observer for Noise Factors (e)Feedforward ControllerNoise FactorsPredicted Response ( , , | , )nyE f x e n x eTarget11Observations of measurable noise factors, denoted by , are unbiased, i.e., and . 3 Controller Design3.1 Problem AssumptionsThe manufacturing process is
15、 static with smoothly changing variables over time Parameter StabilityEstimated process parameters denoted by , is estimated from experimental data.)(Coveee0 |eeeEeeee) | (Cove, n and are independent, with E(e)=0, Cov(e)=e, E(n)=0, Cov(n)=n, E()=0, Cov()=. are i.i.d.nBUnBXeBUeBXneUX432143210TTTTTTTT
16、yeUX, |,APCJene, )(2,tycEe 123 Controller Design 3.2 Objective Function), ,(eUXAPCJObjective Function (Quadratic Loss)2432124344342132132213210)(var)(var)(var)(var)( 43230nBUnBXeBUeBXnneeUUXXUBXBUBXBUBXBUBXBeBUeBXeUXnnnneTTTTTTTTTTTTTTTTTTTTTTTEEEt2, tyEeneeenene, , ,2,yVartyEene, )(2,tycEUXUXUX,min
17、 arg ),( 1, 1*APCJOptimization Problem( , , ,)f enX U e 13., |,minarg*1*eUXXeXAPCJEStep 1 Off-line Controllable Factors SettingStep 2 On-line Automatic Control LawProcedure for Solving Optimization ProblemStep 2 obtain X* by solving optimization problem of JAPC ), ,(, ,|,minarg1*neUeXeXUXUhJAPC3 Con
18、troller Design 3.3 Control Strategy*(, , ,)h enUUX e Step 1 Closed form solution of U* by solving0U APCJProcess Control Strategy Two Step Procedure*XX UXUXUX,min arg ),( 1, 1*APCJ144. Case Study : An Injection Molding ProcessProcess DescriptionResponse Variable (y): Percentage Shrinkage of Molded Pa
19、rtsProcess Variables:15DOE ModelingReduced DOE Model after Coefficient Significance Tests Designed Experiment Result (Engel, 1992)1312121113121321321106. 0094. 0125. 0063. 0556. 0588. 0 05. 0144. 0281. 0425. 0231. 0063. 0075. 025. 2nununxnxeuexnuuuxxxy2121-4105.51IParameter Estimation Error16RPD Set
20、tings Robust Parameter Design.)5563. 05875. 0()1063. 00938. 0125. 00625. 005. 0() (223222322111enuxuuxxyVarVariance ModelResponse ModelTx*3*04664. 0XTu02222. 0*1*U, and u1 and x3 are adjusted according to target values as in right table1312121113121321321106. 0094. 0125. 0063. 0556. 0588. 0 05. 0144
21、. 0281. 0425. 0231. 0063. 0075. 025. 2nununxnxeuexnuuuxxxy17Objective Loss Function UUXXUUXXUUXXUBXBUBXBUBXBUBXBeBUeBXeUXeUXBBBBne41312341323022212122221243443421321322132102 ), ,(TnTnTTnTTTTTTTTTTTTTTTTTAPCeeetJ*3424*132212211*131012212424222122122*11412211XBBXBBBBXXBBBBBBUBBTnTeTTTnTnTeTeeeteeeOpt
22、imal Settings DOE-Based APCUXXX,|,minarg1*1*1eJEAPCewhere 112)(21*1*21211121)(|,12|,MiieeAPCAPCeeeieJMeJEUXUX181e )25. 0 , 0(N1n)25. 0 , 0(NAssuming Optimal Off-line Setting Simulation ResultsT0.50850.2817-0.5121*XComparison of RPD, CE control and Cautious ControlControl Strategy Evaluation Cautious
23、 control law performs much better than RPD1e (0,0.025)N19Simulation Results - 2CE controller performs much better than RD when the measurement is perfect, but its advantage decreases when the measurement is not perfect, and will cause a larger quality loss than RPD controller under high measurement
24、uncertainty.0101234567JCE/JRD1122/eeCertainty Equivalence assume observation perfect20050100150-202e0050100150-2-101Oberver Noise Level05010015011.62Percentage ShrinkageObservationsyyceyrdControl strategy with partial sensing failure 1 Sensor noise level change no modeling
25、 error150 observations, sensor noise level increased from point 51 to 100, then restored. t=1.6111122220.1 1eeeeCE Control suffers greatly from noise level changeMean of RPD has deviated from target*(, , ,)h enUUX e 21Control strategy with partial sensing failure 2255 observations, sensor noise leve
26、l increased from point 101 to 200, then restored Sensor noise level changeOverall J/J_ce=16.8%. APC performance is steady over different noise levels. APC considering modeling error*(, , ,)h enUUX e 22Control strategy with partial sensing failure 3 Sensor failure - Assume no modeling error,- 250 obs
27、ervations, sensor failed from point 51 to 150, then repaired 1 . 011eeControl StrategySwitch to RPD setting after the detection of sensor failure- Actual system will have step response050100150200250-202e0050100150200250-202ehat0501001502002502Percentage ShrinkageObservationsyyceyrd232 In-p
28、rocess sensing variables:tonnage signal, shut height, vibration, punch speed, temperature3 In-process part sensing: surface and dimension measurements1 Controllable variables:shut height, punch speed, temperature, binding force casterin-process partformingFormed partDOE-Based APCEstimable noise factors:material properties (hardness, thickness),gib conditions, die/tool wearInestimable noise factors:distribution of lubrication, materialcoating properties, die set-up variati
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2 怎樣放得更大 教學設計-2024-2025學年科學六年級上冊教科版
- 1詠柳教學設計-2023-2024學年二年級下冊語文統(tǒng)編版
- 8千年夢圓在今朝 教學設計-2023-2024學年語文四年級下冊統(tǒng)編版
- 1常見傳染病的預防 教學設計 -九年級體育與健康
- Unit 3 Where did you go?(教學設計)-2023-2024學年人教PEP版英語六年級下冊
- Unit 4 My Favourite Subject教學設計 2024-2025學年人教版(2024)七年級英語上冊
- 4 認識萬以內(nèi)的數(shù) 第二課時(教學設計)-2023-2024學年二年級下冊數(shù)學蘇教版
- 10古詩三首《竹石》教學設計-2023-2024學年統(tǒng)編版語文六年級下冊
- Unit 8 I can do this for you?(教學設計)-2024-2025學年譯林版(三起)(2024)英語三年級上冊
- Unit 7 A Day to Remember第二課時Section A 2a-2e 教學設計 2024-2025學年人教版英語七年級下冊
- 《電力建設施工技術規(guī)范 第2部分:鍋爐機組》DLT 5190.2
- 供水管網(wǎng)搶修管理課件
- 微信公眾號總結(jié)報告
- 制定售后服務績效考評標準與方法
- 正確認識人的本質(zhì) (修改版)
- 2023年北京師范大學珠海分校招聘考試真題
- 2016-2023年江蘇經(jīng)貿(mào)職業(yè)技術學院高職單招(英語/數(shù)學/語文)筆試歷年考點試題甄選合集含答案解析
- 高原健康呼吸用氧 通用技術指南
- 中醫(yī)內(nèi)科學-咳嗽課件
- 2022管理學試題庫(馬工程)
- 光儲充車棚技術方案設計方案
評論
0/150
提交評論