下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、金山中學 2017 學年第二學期高一年級數(shù)學學科期中考試試卷(考試時間:120120 分鐘 滿分:150150 分)一、填空題(本大題滿分 5454 分)本大題共有 1212 題,其中第 1 1 題至第 6 6 題每小題 4 4 分,第 7 7 題至第 1212 題每小題 5 5 分,考生應在答題紙上相應編號的空格內(nèi)直接填寫結果,否則一律得零分.1.1.已知Sn是等差數(shù)列l(wèi)aj的前n項和,若a4 =3,則=_ . .32 2若的圓心角所對的弧長為3二,則扇形半徑長為43._方程2cosx+1 =0的解集是.1E4.設cos =,貝U sin的值為_ .925.函數(shù)v=sinx =vxc至i的值
2、域為133丿6 6.設函數(shù)f x是 R R 上的奇函數(shù),當x 0時,f x = cosx,則當x0時,f (x)的解析式為_ . .7 7若等比數(shù)列的前n項和=2 3n+r,則r =_ 8.8.如圖所示,在直角坐標系xOy中,角的頂角是原點,始邊與x軸正(n兀)半軸重合,終邊交單位圓于點A,且,一 將角口的終邊按逆時6 2丿i1針方向旋轉(zhuǎn)一,交單位圓于點B. .若點A的橫坐標為,則點B的橫坐33標為_ . .9 9已知函數(shù)f(x)=s in xi,若將函數(shù)f(x)的圖像向左平移a(Ova 兀)個單位,所I 6丿得圖像關于y軸對稱,則實數(shù)a的取值集合是 _.10. .已知數(shù)列:an滿足a =1,
3、anan計=2nn N,Sn為數(shù)列同的前n項和,則1 a n 1,n:6卄*1111.已知數(shù)列 3”滿足an=2,右對任意n N都有an- and,則實數(shù)aan,n6-2 -的取值范圍是_.1212.已知函數(shù)f x =4sini2xx0,的圖像與直線y = m的三個交點的橫坐標I 6人6丿分別為x1,x?,xxx2x3),那么 論+2x2+x3的值是_. .二、選擇題(本大題滿分 2020 分)本大題共有 4 4 題,每題只有一個正確答案 考生應在答題紙的 相應編號上,將代表答案的小方格涂黑,選對得5 5 分,否則一律得零分.13.13. 已知Sn為數(shù)列;an?的前n項和,且滿足Sn二n2 4
4、n 2,則a3a4()A.A.10B B .11C C .33D D .3414.14. 在ABC中,角A,B,C所對的邊分別為a,b,c,則“a=b”是“acosA二bcosB”的()A.A.充分不必要條件B B .必要不充分條件C.C.充要條件D.D.既不充分也不必要條件1f x二si n arcsi nx與g x = arcs in si nx?是同一函數(shù);若函數(shù)ytan ax的最小3正周期為二, 則a =1; 函數(shù) sinxcosx-1 的最小正周期為 兀.其中正確的命題個數(shù)為A.A.0B B .1C C .2A2323 a 52412603A.A.B B .C.C.140280140
5、三、解答題(本大題滿分 7676 分)本大題共有 5 5 題,解答下列各題必須在答題紙相應編號的規(guī)定1515.有下列四個命題:只有在區(qū)間十上,正弦函數(shù)f x =sx才有反函數(shù);1616 .對于實數(shù) x x , l.xl.x 1 1 表示不超過 x x 的最大整數(shù). .已知正數(shù)數(shù)列滿足SnK +丄anJn,N*,其中Sn為數(shù)列玄!的前n項和,丄+丄+ +丄=($,丨I.S8JD. 5280-3 -區(qū)域內(nèi)寫出必要的步驟.1717.(本題滿分 1414 分)設讐一3,求sin3-的值. .18.18.(本題滿分 1414 分)本題共有 2 2 個小題,第 小題滿分 6 6 分,第 小題滿分 8 8
6、分.257已知等比數(shù)列 a?a?滿足:公比q三|0,1,且a1a5,a2a4= =1 1 (1 1)求數(shù)列 1a1an n? ?的通項公式;(2 2)設點anb在函數(shù)f x=log2X a0 且 a=1的圖像上,求數(shù)列 g 的前n項和的最大值,并求出此時的n. .19.19.(本題滿分 1414 分)本題共有 2 2 個小題,第 1 1 小題滿分 6 6 分,第 2 2 小題滿分 8 8 分. .已知函數(shù)f x = ,3sinIQX亠門 j-j-cosix亠,:0:二,八0為偶函數(shù),且函數(shù)31y=f x圖象的兩相鄰對稱軸間的距離為-.(1 1)求 f f 的值;18丿(2 2)將函數(shù)y二f x
7、的圖象向右平移 一個單位后,再將得到的圖象上各點的橫坐標伸長到6原來的4倍,縱坐標不變,得到函數(shù)y = g x的圖象,求g x的單調(diào)遞減區(qū)間. .20.20.(本題滿分 1616 分)本題共有 2 2 個小題,-4 -第 1 1 小題滿分 6 6 分,第 2 2 小題滿分 1010 分. . 如圖,公路AM、AN圍成的是一塊角形耕地,其中頂角A滿足tan A=-2. .在該土地中有點P,經(jīng)測量它到公路AM、AN的距離分別為3km,、,5km. .現(xiàn)要過點修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個工業(yè)區(qū).(1 1)用sin B,sin C來表示BC;(2)為盡量減少耕地占用,問AB
8、等于多少時,使該工業(yè)區(qū)面積最小?并求出最小面積21.21.(本題滿分 1818 分)本題共有 3 3 個小題,第 1 1 小題滿分 4 4 分,第 2 2 小題滿分 6 6 分,第 3 3 小 題滿分 8 8 分.用部分自然數(shù)構造如圖的數(shù)表:用aji j表示第i行第j個數(shù)i,jN,使得aM=3j =i,每行中的其他各數(shù)分別等于其“肩膀”上的兩個數(shù)之和,設第n(n N*)行中的各數(shù)之和為bn. .(已知bnpbnqn N*,求b?, b?, p, q的值;(2) 令cbn- 2,證明: 心是等比數(shù)列,并求出:bn ?的通項公式;(3) 數(shù)列 %)中是否存在不同的三項bp,bq,brp,q,rN*
9、恰好成等差數(shù)列?若存在, 求出p,q,r的關系,若不存在,說明理由. .477451114115-5 -金山中學 2017 學年第二學期高一年級數(shù)學學科期中考試參考答案(考試時間:120120 分鐘 滿分:150150 分)一、填空題( (本大題滿分 5454 分) )本大題共有 1212 題,其中第 1 1 題至第 6 6 題每小題 4 4 分,第 7 7 題 至第 1212 題每小題 5 5 分,考生應在答題紙上相應編號的空格內(nèi)直接填寫結果,否則一律得零分.1.1.已知Sn是等差數(shù)列(aj的前n項和,若a4 =3,則=_. .43TT2 2若的圓心角所對的弧長為3二,則扇形半徑長為214f
10、2兀13 3方程2cosx +1=0的解集是_2x x = 2k兀 ,kEZ I3J1024.4. 設cosT= -則sin的值為.士一9235.5._ 函數(shù)y =sin x = x i的值域為_ . - 1I33丿V2 6.6. 設函數(shù)f x是 R R 上的奇函數(shù),當x 0時,f x = cosx,則當x0時,f (x)的解析式為_. .f (x )=cosx(x c0)7.7. 若等比數(shù)列耳的前n項和Sn=2 3n+r,則r =_.-28.8. 如圖所示,在直角坐標系xOy中,角的頂角是原點,始邊與x軸正(Tt Tt )A,且“(6一將角 s 勺終邊按逆時1B. .若點A的橫坐標為-,則點
11、B的橫坐3 n j9.已知函數(shù)f(x)=sin.x丨,若將函數(shù)f(x)的圖像向左平移a(0va)個單位,所I 6 J10. .已知數(shù)列a* *滿足ai= 1,ana* 1=2 n,N,Sn為數(shù)列、a*的前n項和,則半軸重合,終針方向旋轉(zhuǎn)一,交單位圓于點3標為_1 -2、66得圖像關于y軸對稱,則實數(shù)a的取值集合是-6 -1009小3 2-3-7 -an 1, n:6卄,宀*11已知數(shù)列滿足務二2,右對任意nN都有ana. 1,則實數(shù)aian_5, n蘭6的取值范圍是.丄,z(2 12 )12.已知函數(shù)f (x )=4sin ”2x + =0 |的圖像與直線y = m的三個交點的橫坐標“ I 6
12、人61J分別為x1, x2,X3(X|V X? X3),那么X|* 2x?+ X3的值是、選擇題( (本大題滿分 2020 分) )本大題共有 4 4 題,每題只有一個正確答案考生應在答題紙的相應編號上,將代表答案的小方格涂黑,選對得5 5 分,否則一律得零分.13.13.已知Sn為數(shù)列CaJ的前n項和,且滿足Sn= n2 4n 2,則83*4*5=( C C )A.A.10B B .11C C .33D D .3414.14. 在ABC中,角 代B,C所對的邊分別為a,b,c,則“a = b”是“acosA二bcosB” 的( (A A )A.A.充分不必要條件B B .必要不充分條件C.C
13、.充要條件D.D.既不充分也不必要條件15.15.有下列四個命題:只有在區(qū)間 -一,一 上,正弦函數(shù)f x二sinx才有反函數(shù);IL 2 21f x二si n arcs inx與g x二arcs in si nx是同一函數(shù);若函數(shù)y tan ax的最小3正周期為兀,則a =1;函數(shù)f (x )= sin x cosx -1的最小正周期為 兀.其中正確的命題個數(shù)為A.A.0B B .1C C .2D D .31616 .對于實數(shù) x x , l-xl-x 1 1 表示不超過 x x 的最大整數(shù)ann N,其中Sn為數(shù)列an*的前n項和,則繆 B B.5241C C2603D.細140280140
14、280、解答題( (本大題滿分 7676 分) )本大題共有 5 5 題,解答下列各題必須在答題紙相應編號的規(guī)定5:3已知正數(shù)數(shù)列)-8 -區(qū)域內(nèi)寫出必要的步驟.1717.(本題滿分 1414 分)1 ta n:1 解:tantan:- -2. .(4丿1 -ta n a32.小2ta n a41 - ta na3sin 22,cosY1 +ta n a51 +ta n a518.18.(本題滿分 1414 分)本題共有 2 2 個小題,第(1 1)小題滿分 6 6 分,第 小題滿分 8 8 分.257已知等比數(shù)列、an滿足:公比q三0,1,且a1a5,a2a4= 1. .(2 2)求數(shù)列an
15、?的通項公式;(2 2)設點an,bn在函數(shù)f x = log2x a - 0 且 a=1的圖像上,求數(shù)列 g 的前n項和 的最大值,并求出此時的n. .又;q 0,1 ,. a1=16, q4.25=n 5n = - n-一I 2、九 心設tan I -(Ji丄,求sin-_2a|的值.3(nsin 2:3上cos2sin2解:(1 1)由盧 7a?84二 116 = *=1d a1 或 a1a5 1616a5 1(2)由題意,bn= log2a1n4= log 2 26二6-2n n Nn 4 6 - 2n2-b/f是等差數(shù)列,且Tn二-9 -Tn max訂2訂3= = 6.6.19.19
16、.(本題滿分 1414 分)本題共有 2 2 個小題,第 1 1 小題滿分 6 6 分,第 2 2 小題滿分 8 8 分. .-10 -(2)由題意得g x = 2cos20.20.(本題滿分 1616 分)本題共有 2 2 個小題,第 1 1 小題滿分 6 6 分,第 2 2 小題滿分 1010 分. .如圖,公路AM、AN圍成的是一塊角形耕地,其中頂角A滿足tanA = 2.在該土地中有 點P,經(jīng)測量它到公路AM、AN的距離分別為3km, . 5km. .現(xiàn)要過點修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個工業(yè)區(qū).(1 1)用sin B,sin C來表示BC;(2)為盡量減少耕
17、地占用,問AB等于多少時,使該工業(yè)區(qū)面積最???并求出最小面積解:(1 1)二BP=,CP=5,sin B sin C已知函數(shù)f x - .3sinx:;:j-cosx亠門0叮叮二0為偶函數(shù),且函數(shù)y = f x圖象的兩相鄰對稱軸間的距離為-(1(1)求 f f 的值;18丿(2)將函數(shù)y = f x的圖象向右平移 石個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y = g x的圖象,求g X的單調(diào)遞減區(qū)間TC 1解: ( 1 1)化簡得:f x = 2sin卜.x -_ nK,f x為偶函數(shù),.- =kr:2二又:9 八:::二,:3又函數(shù)y = f x圖象的兩相
18、鄰對稱軸間的距離為-,2.f x =2cos2x,因此f2cos一 =284x兀令2k2k二::二23即g x的單調(diào)遞減區(qū)間為4k二,4 ,k Z.-3,3,-11 - BC二BP CP -sin Bsin C答:當AB =5時,該工業(yè)區(qū)的面積最小值為15. .21.21.(本題滿分 1818 分)本題共有 3 3 個小題,第 1 1 小題滿分 4 4 分,第 2 2 小題滿分 6 6 分,第 3 3 小 題滿分 8 8 分.用部分自然數(shù)構造如圖的數(shù)表:用aji j表示第i行第j個數(shù)i,jN,使得玄祁=aj=i,每行中的其他各數(shù)分別等于其“肩膀”上的兩個數(shù)之和,設第n n N*行中的各數(shù)之和為bn. .(4)已知bnpbnq n N*,求b?, b?, p, q的值;(5)令Cn= bn 2,證明: 是等比數(shù)列,并求出bn 1的通項公式;(6)數(shù)列中是否存在不同的三項bp,bq,d( p,q,r N*)恰好
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化產(chǎn)品出口代理協(xié)議模板3篇
- 2025年度征收補償與安置補償協(xié)議執(zhí)行監(jiān)督辦法4篇
- 2024年04月湖南國家開發(fā)銀行湖南分行暑期實習生招考筆試歷年參考題庫附帶答案詳解
- 個人汽車租借協(xié)議2024年標準格式樣張版B版
- 2025年度文化創(chuàng)意產(chǎn)業(yè)園區(qū)場地租賃管理協(xié)議4篇
- 個人與公司買賣合同范本完整版
- 2025年度文化產(chǎn)業(yè)園區(qū)場地合作開發(fā)合同協(xié)議書4篇
- 2024版室外房屋墻面裝修合同書版B版
- 2025年度化妝品全球包銷代理合同范本4篇
- 2024裝飾裝修合同的法律適用
- 礦山安全生產(chǎn)法律法規(guī)
- 標點符號的研究報告
- 小學數(shù)學《比的認識單元復習課》教學設計(課例)
- 詞性轉(zhuǎn)換清單-2024屆高考英語外研版(2019)必修第一二三冊
- GB/T 44670-2024殯儀館職工安全防護通用要求
- 安徽省合肥市2023-2024學年七年級上學期期末數(shù)學試題(含答案)
- 合同債務人變更協(xié)議書模板
- 2024年高中生物新教材同步選擇性必修第三冊學習筆記第4章 本章知識網(wǎng)絡
- 西班牙可再生能源行業(yè)市場前景及投資研究報告-培訓課件外文版2024.6光伏儲能風電
- 2024-2029年中國制漿系統(tǒng)行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報告
- (正式版)SHT 3225-2024 石油化工安全儀表系統(tǒng)安全完整性等級設計規(guī)范
評論
0/150
提交評論