




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上統(tǒng)計分析與SPSS的應(yīng)用(第五版)(薛薇)課后練習(xí)答案第11章SPSS的因子分析1、簡述因子分析的主要步驟是什么?因子分析的主要步驟: 一、前提條件:要求原有變量之間存在較強的相關(guān)關(guān)系。二、因子提取。三、使因子具有命名解釋性:使提取出的因子實際含義清晰。四、計算樣本的因子得分。2、對“基本建設(shè)投資分析.sav”數(shù)據(jù)進行因子分析。要求:1)利用主成分方法,以特征根大于1為原則提取因子變量,并從變量共同度角度評價因子分析的效果。如果因子分析效果不理想,再重新指定因子個數(shù)并進行分析,對兩次分析結(jié)果進行對比。2) 對比未旋轉(zhuǎn)的因子載荷矩陣和利用方差極大法進行旋轉(zhuǎn)的因子載荷矩陣
2、,直觀理解因子旋轉(zhuǎn)對因子命名可解釋性的作用?!盎窘ㄔO(shè)投資分析”因子分析步驟:分析à降維à因子分析à導(dǎo)入全部變量到變量框中à詳細設(shè)置描述、抽取的設(shè)置如下: 旋轉(zhuǎn)、得分、選項的設(shè)置如下: (1)相關(guān)系數(shù)矩陣國家預(yù)算內(nèi)資金(1995年、億元)國內(nèi)貸款利用外資自籌資金其他投資相關(guān)系數(shù)國家預(yù)算內(nèi)資金(1995年、億元)1.000.458.229.331.211國內(nèi)貸款.4581.000.746.744.686利用外資.229.7461.000.864.776自籌資金.331.744.8641.000.928其他投資.211.686.776.9281.000表一是
3、原有變量的相關(guān)系數(shù)矩陣。由表可知,一些變量的相關(guān)系數(shù)都較高,呈較強的線性關(guān)系,能夠從中提取公共因子,適合進行因子分析。KMO 和巴特利特檢驗KMO 取樣適切性量數(shù)。.706Bartlett 的球形度檢驗上次讀取的卡方119.614自由度10顯著性.000由表二可知,巴特利特球度檢驗統(tǒng)計量的觀測值為119.614,相應(yīng)的概率P-值接近0.如果顯著性水平為0.05,由于概率P-值小于顯著性水平,則應(yīng)拒絕原假設(shè),認為相關(guān)系數(shù)矩陣與單位陣有顯著差異,原有變量適合做因子分析。同時,KMO值為0.706,根據(jù)KMO度量標(biāo)準(zhǔn)可知原有變量可以進行因子分析。公因子方差初始值提取國家預(yù)算內(nèi)資金(1995年、億元)
4、1.000.196國內(nèi)貸款1.000.769利用外資1.000.820自籌資金1.000.920其他投資1.000.821提取方法:主成份分析。由表三可知,利用外資、自籌資金、其他投資等變量的絕大部分信息(大于80%)可被因子解釋,這些變量的信息丟失較少。但國家預(yù)算內(nèi)資金這個變量的信息丟失較為嚴重(近80%)。總的來說,本次因子提取的總體效果還不錯。為了達到更好的效果,可以重新指定提取特征值的標(biāo)準(zhǔn),指定提取2個因子。補充說明如下:故由表四可知,第1個因子的特征值很高,對解釋原有變量的貢獻最大;第三個以后的因子特征值都較小,對解釋原有變量的貢獻很小,可以忽略,因此選取兩個因子是合適的。在上述“抽
5、取”選項中,選擇“因子的固定數(shù)量(N)”并修改其值為2,其他不變。表五:重新提取因子后的公因子方差表公因子方差初始值提取國家預(yù)算內(nèi)資金(1995年、億元)1.000.975國內(nèi)貸款1.000.795利用外資1.000.860自籌資金1.000.937其他投資1.000.882提取方法:主成份分析。 表五是指定提取2個特征值下的變量共同度數(shù)據(jù)。由第二列數(shù)據(jù)可知,此時所有變量的共同度均較高,各個變量的信息丟失都較少。因此,本次因子提取的總體效果比較理想??偡讲罱忉尳M件初始特征值提取載荷平方和總計方差百分比累積 %總計方差百分比累積 %13.52670.51870.5183.52670.51870.
6、5182.92318.45288.9703.3066.11295.0824.2003.99399.0755.046.925100.000提取方法:主成份分析。總方差解釋組件初始特征值提取載荷平方和旋轉(zhuǎn)載荷平方和總計方差百分比累積 %總計方差百分比累積 %總計方差百分比累積 %13.52670.51870.5183.52670.51870.5183.24464.88964.8892.92318.45288.970.92318.45288.9701.20424.08188.9703.3066.11295.0824.2003.99399.0755.046.925100.000提取方法:主成份分析。表
7、六中,第一個因子的特征值為3.526,解釋原有5個變量總方差的70.5%,累計方差貢獻率為70.5%;第二個因子的特征值為0.923,解釋原有7個變量總方差的18%,累計方差貢獻率為88.97%.(2)成分矩陣a組件12國家預(yù)算內(nèi)資金(1995年、億元).443.882國內(nèi)貸款.877.160利用外資.906-.199自籌資金.959-.132其他投資.906-.247提取方法:主成份分析。a. 已提取 2 個成分。表七顯示了因子載荷矩陣。由表可知,自籌資金、其他投資、利用外資和國內(nèi)貸款四個變量在第一個因子上的載荷都較高,意味著它們與第一個因子的相關(guān)程度高,第一個因子很重要;第二個因子除了與國
8、家預(yù)算內(nèi)資金相關(guān)程度較高外,與其他的原有變量相關(guān)性較小,對原有變量的解釋作用不明顯。下表采用方差極大法對因子載荷矩陣實行正交旋轉(zhuǎn)以使因子具有命名解釋性。指定按第一個因子載荷降序的順序輸出旋轉(zhuǎn)后的因子載荷,并繪制旋轉(zhuǎn)后的因子載荷圖。旋轉(zhuǎn)后的成分矩陣a組件12國家預(yù)算內(nèi)資金(1995年、億元).128.979國內(nèi)貸款.775.440利用外資.921.110自籌資金.949.190其他投資.937.064提取方法:主成份分析。 旋轉(zhuǎn)方法:Kaiser 標(biāo)準(zhǔn)化最大方差法。a. 旋轉(zhuǎn)在 3 次迭代后已收斂。由表可知,自籌資金、其他投資和利用外資在第 1個因子上有較高的載荷,第一個因子主要解釋了這幾個變量
9、,可解釋為外部投資;國內(nèi)貸款和國家預(yù)算內(nèi)資金在第2個因子上有較高的載荷,第二個因子主要解釋了這幾個變量,可解釋為內(nèi)部投資。與旋轉(zhuǎn)前相比,因子含義較清晰。3、利用“消費結(jié)構(gòu).sav”數(shù)據(jù)進行因子分析的部分結(jié)果如下:成分矩陣a組件12食品.843-.435衣著.596.687居住.886-.057家庭設(shè)備用品及服務(wù).893-.090醫(yī)療保健.720.478交通和通信.898-.329教育文化娛樂服務(wù).965-.070雜項商品和服務(wù).894.120提取方法:主成份分析。a. 已提取 2 個成分。旋轉(zhuǎn)后的成分矩陣a組件12食品.945.087衣著.132.899居住.777.429家庭設(shè)備用品及服務(wù).
10、801.405醫(yī)療保健.349.791交通和通信.934.206教育文化娛樂服務(wù).851.460雜項商品和服務(wù).689.583提取方法:主成份分析。 旋轉(zhuǎn)方法:Kaiser 標(biāo)準(zhǔn)化最大方差法。a. 旋轉(zhuǎn)在 3 次迭代后已收斂。(1)根據(jù)成分矩陣計算各變量的變量共同度以及各因子變量的方差貢獻,并以此評價本次因子分析的總體效果是否理想。(2)根據(jù)旋轉(zhuǎn)成分矩陣說明兩個變量的含義?!跋M結(jié)構(gòu)”因子分析(1) 各變量共同度如下:食品的變量共同度為0.8432+(-0.435)2=0.8999,其他類似。衣著為0.827居住為0.788家庭設(shè)備用品及服務(wù)為0.806醫(yī)療保健為0.747交通和通信為0.915教育文化娛樂服務(wù)為0.936雜項商品和服務(wù)為0.814 變量共同度刻畫了因子全體對變量信息解釋的程度。此題中大多數(shù)原有變量的變量共同度均較高(全部變量共同度都大于70%,大部分大于80%),說明提取的因子可以解釋原有變量的大部分信息,僅有較少的信息丟失,因子分析的效果較好。個因子變量的方差貢獻如下:第一個因子的方差貢獻為S12=0.8432+0.5962+0.8862+=5.704第二個為1.029因子的方差貢獻反映了因子對原有變量總方差的解釋能力。由題中可知,第一個變量解釋能力更強,更重要。(2)由旋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產(chǎn)鄉(xiāng)鎮(zhèn)活動方案
- 房地產(chǎn)公司社區(qū)活動方案
- 福建三明2024~2025學(xué)年高一下冊期末模擬數(shù)學(xué)試題學(xué)生卷
- 互聯(lián)網(wǎng)平臺數(shù)據(jù)驅(qū)動決策的個性化教育解決方案考核試卷
- 形狀記憶纖維在智能建筑中的應(yīng)用案例分析考核試卷
- 合成氣制柴油技術(shù)環(huán)保技術(shù)集成與應(yīng)用考核試卷
- 產(chǎn)業(yè)升級中的區(qū)域創(chuàng)新能力建設(shè)考核試卷
- 部編教材三年級語文下冊各單元試卷(全冊)
- 2025年中國PT泵嘴試驗臺數(shù)據(jù)監(jiān)測報告
- 2025年中國PET不干膠數(shù)據(jù)監(jiān)測報告
- 信息安全培訓(xùn)《釣魚郵件防范技巧》
- 2025至2030中國燙印箔行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 部編版高一語文必修上冊教案計劃
- 臨時工請假管理制度
- 小學(xué)用電安全課件
- 2025年北京市高考英語試卷真題(含答案解析)
- 2025年中國浮萍項目投資可行性研究報告
- 商洛學(xué)院《大學(xué)學(xué)術(shù)綜合英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年高考英語全國二卷聽力試題答案詳解講解(課件)
- 高級采氣工理論練習(xí)卷附答案
- 打架斗毆等暴力事件處理流程圖
評論
0/150
提交評論