版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、主講:童亮內(nèi)容提要-總綱第一章第一章 控制系統(tǒng)導(dǎo)論控制系統(tǒng)導(dǎo)論第二第二章章 控制系統(tǒng)控制系統(tǒng)的數(shù)學(xué)模型的數(shù)學(xué)模型第三第三章章 線性系統(tǒng)線性系統(tǒng)的時(shí)域分析法的時(shí)域分析法第四第四章章 線性系統(tǒng)線性系統(tǒng)的根軌跡法的根軌跡法第五第五章章 線性系統(tǒng)線性系統(tǒng)的頻域分析法的頻域分析法2第六第六章章 線性系統(tǒng)線性系統(tǒng)的校正方法的校正方法內(nèi)容提要-總綱第一章第一章 控制系統(tǒng)導(dǎo)論控制系統(tǒng)導(dǎo)論第二章第二章 控制系統(tǒng)的數(shù)學(xué)模型控制系統(tǒng)的數(shù)學(xué)模型第三第三章章 線性系統(tǒng)線性系統(tǒng)的時(shí)域分析法的時(shí)域分析法第四第四章章 線性系統(tǒng)線性系統(tǒng)的根軌跡法的根軌跡法第五第五章章 線性系統(tǒng)線性系統(tǒng)的頻域分析法的頻域分析法3第六第六章章 線
2、性系統(tǒng)線性系統(tǒng)的校正方法的校正方法 了解自動(dòng)控制系統(tǒng)數(shù)學(xué)模型的概念 掌握自動(dòng)控制系統(tǒng)數(shù)學(xué)模型的建立方法 掌握傳遞函數(shù)的定義和性質(zhì) 掌握典型環(huán)節(jié)的傳遞函數(shù) 掌握用微分方程、傳遞函數(shù)、結(jié)構(gòu)圖和流程圖表征控制系統(tǒng)的基本方法 掌握各種模型表達(dá)形式之間的相互轉(zhuǎn)換關(guān)系內(nèi)容提要-章節(jié)內(nèi)容4學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo)第二章 控制系統(tǒng)的數(shù)學(xué)模型內(nèi)容提要-章節(jié)內(nèi)容52.1 控制系統(tǒng)的數(shù)學(xué)模型2.2 復(fù)習(xí)拉普拉斯變換2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖第二章 控制系統(tǒng)的數(shù)學(xué)模型2 控制系統(tǒng)的數(shù)學(xué)模型6 什么是數(shù)學(xué)模型什么是數(shù)學(xué)模型l 工程、控制、數(shù)學(xué)三者的統(tǒng)一工程、控制、數(shù)學(xué)三者的統(tǒng)一中學(xué)時(shí)中學(xué)
3、時(shí)的函數(shù)概念:的函數(shù)概念:在在電路電路的學(xué)習(xí)中對(duì)函數(shù)概念的理解:的學(xué)習(xí)中對(duì)函數(shù)概念的理解:自動(dòng)控制系統(tǒng)自動(dòng)控制系統(tǒng)對(duì)函數(shù)概念的理解:對(duì)函數(shù)概念的理解:( )yf xxy自變量,因變量xy激勵(lì)電路系統(tǒng)響應(yīng)xy控制量控制系統(tǒng)被控制量研究對(duì)象的復(fù)雜程度加深2 控制系統(tǒng)的數(shù)學(xué)模型7 什么是數(shù)學(xué)模型什么是數(shù)學(xué)模型同樣的同樣的x和和y,在不同的課程學(xué)習(xí)中,思維方式發(fā)生了,在不同的課程學(xué)習(xí)中,思維方式發(fā)生了變化:變化:l中學(xué)時(shí)的函數(shù)是一個(gè)純數(shù)學(xué)的概念中學(xué)時(shí)的函數(shù)是一個(gè)純數(shù)學(xué)的概念l在電路和控制系統(tǒng)中增加了人的因素在電路和控制系統(tǒng)中增加了人的因素可以用數(shù)學(xué)的方法來(lái)解決工程中遇到的實(shí)際問(wèn)題,可可以用數(shù)學(xué)的方法來(lái)
4、解決工程中遇到的實(shí)際問(wèn)題,可以通過(guò)自動(dòng)控制原理課程把數(shù)學(xué)、工程、控制三者聯(lián)以通過(guò)自動(dòng)控制原理課程把數(shù)學(xué)、工程、控制三者聯(lián)系統(tǒng)一起來(lái)系統(tǒng)一起來(lái)2 控制系統(tǒng)的數(shù)學(xué)模型8 什么是數(shù)學(xué)模型什么是數(shù)學(xué)模型彈簧:彈簧: y(t) = K F(t)K為彈性系數(shù),為彈性系數(shù),y(t)為位移,為位移,F(xiàn)(t)為為外力外力數(shù)學(xué)模型數(shù)學(xué)模型 系統(tǒng)系統(tǒng)運(yùn)動(dòng)規(guī)律的運(yùn)動(dòng)規(guī)律的數(shù)學(xué)描述數(shù)學(xué)描述,能夠,能夠描述描述控制系統(tǒng)控制系統(tǒng)輸出量輸出量和和輸入量輸入量的的關(guān)系關(guān)系實(shí)際物理系統(tǒng)實(shí)際物理系統(tǒng)理想化理想化物理模型物理模型數(shù)學(xué)化數(shù)學(xué)化數(shù)學(xué)模型數(shù)學(xué)模型線性化線性化線性數(shù)學(xué)模型線性數(shù)學(xué)模型標(biāo)準(zhǔn)化標(biāo)準(zhǔn)化標(biāo)準(zhǔn)數(shù)學(xué)模型標(biāo)準(zhǔn)數(shù)學(xué)模型2 控
5、制系統(tǒng)的數(shù)學(xué)模型9 建立數(shù)學(xué)模型的方法建立數(shù)學(xué)模型的方法l 分析分析法法:根據(jù)系統(tǒng)根據(jù)系統(tǒng)內(nèi)在運(yùn)動(dòng)規(guī)律內(nèi)在運(yùn)動(dòng)規(guī)律及結(jié)構(gòu)參數(shù),按各變量間所遵循的及結(jié)構(gòu)參數(shù),按各變量間所遵循的物理、化學(xué)定律物理、化學(xué)定律列出數(shù)學(xué)關(guān)系,最終推導(dǎo)出系統(tǒng)輸入量和列出數(shù)學(xué)關(guān)系,最終推導(dǎo)出系統(tǒng)輸入量和輸出量之間的表達(dá)式,建立起系統(tǒng)的輸出量之間的表達(dá)式,建立起系統(tǒng)的數(shù)學(xué)模型數(shù)學(xué)模型適用于適用于已知系統(tǒng)內(nèi)外部特性和運(yùn)動(dòng)規(guī)律已知系統(tǒng)內(nèi)外部特性和運(yùn)動(dòng)規(guī)律的場(chǎng)合的場(chǎng)合。l 實(shí)驗(yàn)實(shí)驗(yàn)法法:在現(xiàn)場(chǎng)對(duì)控制系統(tǒng)在現(xiàn)場(chǎng)對(duì)控制系統(tǒng)加入特定的輸入信號(hào)加入特定的輸入信號(hào),采用某些檢測(cè)儀,采用某些檢測(cè)儀器對(duì)系統(tǒng)的器對(duì)系統(tǒng)的輸出響應(yīng)進(jìn)行測(cè)量和分析輸出
6、響應(yīng)進(jìn)行測(cè)量和分析,得到相關(guān)實(shí)驗(yàn)數(shù)據(jù),得到相關(guān)實(shí)驗(yàn)數(shù)據(jù),從而建立系統(tǒng)的數(shù)學(xué)模型從而建立系統(tǒng)的數(shù)學(xué)模型通常通常是在對(duì)是在對(duì)系統(tǒng)結(jié)構(gòu)和特點(diǎn)一無(wú)所知系統(tǒng)結(jié)構(gòu)和特點(diǎn)一無(wú)所知的情況下而的情況下而采用采用2 控制系統(tǒng)的數(shù)學(xué)模型10 數(shù)學(xué)模型的分類數(shù)學(xué)模型的分類l 微分方程(時(shí)間域)微分方程(時(shí)間域)l 傳遞函數(shù)(復(fù)數(shù)域)傳遞函數(shù)(復(fù)數(shù)域)l 動(dòng)態(tài)結(jié)構(gòu)圖(各元件傳函的連接關(guān)系)信號(hào)流圖動(dòng)態(tài)結(jié)構(gòu)圖(各元件傳函的連接關(guān)系)信號(hào)流圖l 響應(yīng)曲線(響應(yīng)曲線(stepstep、pulsepulse)l 根軌跡圖根軌跡圖l 頻率特性(頻率特性(bodebode圖、圖、nyquistnyquist圖圖、nicholsni
7、chols圖圖)2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立11 建立微分方程數(shù)學(xué)模型的步驟:建立微分方程數(shù)學(xué)模型的步驟:1.1. 確定確定輸入量、輸出量,并根據(jù)需要引進(jìn)一些中間輸入量、輸出量,并根據(jù)需要引進(jìn)一些中間變量變量2.2. 根據(jù)根據(jù)物理或化學(xué)定律,列出物理或化學(xué)定律,列出微分方程微分方程3.3. 消消去中間去中間變量變量4.4. 標(biāo)準(zhǔn)化書寫標(biāo)準(zhǔn)化書寫,寫,寫出出系統(tǒng)的輸入系統(tǒng)的輸入輸出輸出微分方程微分方程(輸出輸出項(xiàng)在項(xiàng)在等號(hào)左端,輸入項(xiàng)在等號(hào)右端,按方程的階次降冪等號(hào)左端,輸入項(xiàng)在等號(hào)右端,按方程的階次降冪排列)排列)i(t)LRui(t)Cuo(t) trbtrdtdbtrdtdbt
8、rdtdbtcatcdtdatcdtdatcdtdammmmmmnnnnnn1111011110.12 電阻、電容、電感電阻、電容、電感( (補(bǔ)充補(bǔ)充) )R+)(tui(t)Li(t)(tu+C)(tui(t)+ Rtitu Rtuti dttiCtu1 dttduCti dttdiLtu dttuLti1電壓電壓-電流電流電流電流-電壓電壓2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立13【例例】LRC無(wú)源網(wǎng)絡(luò),寫出無(wú)源網(wǎng)絡(luò),寫出輸入輸入ui(t)與輸出與輸出uO(t)之間的關(guān)系之間的關(guān)系2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立)()()()(22tutudttduRCdttudLCiooo t
9、utRidttiCdttdiLi1 dttiCtuo1i(t)LRui(t)Cuo(t)14【例例】質(zhì)量質(zhì)量-彈簧阻尼系統(tǒng),彈簧阻尼系統(tǒng),F(xiàn)為外力輸入,位移為外力輸入,位移x為輸出,求輸為輸出,求輸入輸出關(guān)于時(shí)間函數(shù)的描述。入輸出關(guān)于時(shí)間函數(shù)的描述。2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立maFFFFfk22)()()()(dttxdmdttdxftkxtF)()()()(22tFtkxdttdxfdttxdm根據(jù)牛頓第二定律:根據(jù)牛頓第二定律:kxFkdtdxfFf彈簧恢復(fù)力與位移成正比彈簧恢復(fù)力與位移成正比阻尼器阻力與運(yùn)動(dòng)速度成正比阻尼器阻力與運(yùn)動(dòng)速度成正比k 彈簧的彈性系數(shù)彈簧的彈性系數(shù)
10、f 粘滯摩擦系數(shù)粘滯摩擦系數(shù)15【例例】電樞控制電樞控制直流電機(jī),輸入為直流電機(jī),輸入為ua,輸出為,輸出為m,求其關(guān)系。,求其關(guān)系。2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立aaaaaaEtiRdttdiLtu)()()()(tCEmea)()(tiCtMamm)()()()(tMtMtfdttdJcmmmmm)()()()()()()()(22tMRdttdMLtuCtCCfRdttdJRfLdttdJLcacaammemmammamamma(1) 回路電壓:回路電壓:(2) 電樞反電勢(shì):電樞反電勢(shì):(3) 電磁轉(zhuǎn)矩方程:電磁轉(zhuǎn)矩方程:(4) 電機(jī)軸上轉(zhuǎn)矩平衡方程:電機(jī)軸上轉(zhuǎn)矩平衡方程:Jm
11、 :電機(jī)軸上總的轉(zhuǎn)動(dòng)慣量fm : 電機(jī)軸上總的粘性摩擦系數(shù)16【例例】電樞控制電樞控制直流電機(jī),輸入為直流電機(jī),輸入為ua,輸出為,輸出為m,求其關(guān)系。,求其關(guān)系。2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立)()()()(tMKtuKtdttdTccammmm忽略忽略LaemmamamCCfRJRTJm :電機(jī)軸上總的轉(zhuǎn)動(dòng)慣量fm : 電機(jī)軸上總的粘性摩擦系數(shù))()()()()()()()(22tMRdttdMLtuCtCCfRdttdJRfLdttdJLcacaammemmammamammaemmammCCfRCKemmaacCCfRRKTm :電機(jī)時(shí)間常數(shù)Kc :電機(jī)傳遞系數(shù)忽略忽略Ra J
12、m)()(tutCameeC117【例例】減速器減速器2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立2211rr2211MM2121ZZrr12ZZi )(1)()(11212titZZt兩個(gè)嚙合齒輪的線速度相同,傳送的功率相同兩個(gè)嚙合齒輪的線速度相同,傳送的功率相同速比:速比:齒數(shù)與半徑成正比:齒數(shù)與半徑成正比:以以1為輸入,為輸入, 2為輸出的微分方程:為輸出的微分方程:182.1 線性系統(tǒng)時(shí)域模型-微分方程的建立)(1122udtduku23ukuattku ccigigmMkukdtdukdtdT2.1 線性系統(tǒng)時(shí)域模型-微分方程的建立【例例】速度控制系統(tǒng),輸入為速度控制系統(tǒng),輸入為ui,輸
13、出為,輸出為,求傳遞關(guān)系。,求傳遞關(guān)系。+uau2u1ui負(fù)負(fù)載載SMTGk1k2功功放放mutcR2R1R1R1R2運(yùn)放運(yùn)放1:etiukuuku111)(運(yùn)放運(yùn)放2:功放功放:ccammmmMkukdtdT直流電機(jī)直流電機(jī):mi1齒輪系齒輪系:測(cè)速發(fā)電機(jī)測(cè)速發(fā)電機(jī):Mc 負(fù)載擾動(dòng)力矩負(fù)載擾動(dòng)力矩消去消去ut u1 u2 ua m1920嚴(yán)格地說(shuō)線性系統(tǒng)在實(shí)際中不存在,而嚴(yán)格地說(shuō)線性系統(tǒng)在實(shí)際中不存在,而非線性系統(tǒng)非線性系統(tǒng)是普遍是普遍存在的。存在的。彈簧:彈簧:運(yùn)算放大器:運(yùn)算放大器:電阻:電阻: tFkty tuktuiO tiRtu一定條件,一定適用范圍一定條件,一定適用范圍線性系統(tǒng):
14、可用線性微分方程描述,線性系統(tǒng):可用線性微分方程描述,符合疊加原理符合疊加原理,用,用自動(dòng)控制理論解自動(dòng)控制理論解決控制決控制問(wèn)題問(wèn)題非線性系統(tǒng):非線性系統(tǒng):非本質(zhì)非線性:光滑非本質(zhì)非線性:光滑連續(xù)可以局連續(xù)可以局部部線性化線性化2.1 線性系統(tǒng)時(shí)域模型-非線性數(shù)學(xué)模型的線性化21定義:定義:有條件(包括縮小研究范圍)地把非線性的數(shù)學(xué)模型化為線性模型來(lái)處理的方法意義:意義:用線性控制理論來(lái)解決非線性問(wèn)題的方法線性化條件線性化條件:(1)系統(tǒng)有一個(gè)固定的工作點(diǎn)(2)系統(tǒng)正常工作時(shí)偏離工作點(diǎn)很?。?)給定的區(qū)間內(nèi),變量的各階導(dǎo)數(shù)存在數(shù)學(xué)基礎(chǔ):數(shù)學(xué)基礎(chǔ):泰勒級(jí)數(shù),實(shí)現(xiàn)小范圍線性化 非線性數(shù)學(xué)模型的線
15、性化非線性數(shù)學(xué)模型的線性化2.1 線性系統(tǒng)時(shí)域模型-非線性數(shù)學(xué)模型的線性化22 單輸入單輸出單輸入單輸出對(duì)于非線性系統(tǒng),輸入對(duì)于非線性系統(tǒng),輸入x(t),輸出,輸出y = f(x),給定工作點(diǎn),給定工作點(diǎn) y0=f(x0)處各處各階導(dǎo)數(shù)存在。在階導(dǎo)數(shù)存在。在y0=f(x0)附近展開成泰勒級(jí)數(shù)附近展開成泰勒級(jí)數(shù) .!2120220000 xxdxxfdxxdxxdfxfyxx忽略二次以上各項(xiàng),有忽略二次以上各項(xiàng),有 000 xxdxxdfxfyx 000 xxdxxdfxfyx xdxxdfyx0幾何涵義:用切線代替曲線,曲率越小,偏差取值范圍越大。幾何涵義:用切線代替曲線,曲率越小,偏差取值范
16、圍越大。2.1 線性系統(tǒng)時(shí)域模型-非線性數(shù)學(xué)模型的線性化23 兩個(gè)輸入,一個(gè)輸出兩個(gè)輸入,一個(gè)輸出輸入輸入x1(t)、 x2(t) ,輸出,輸出y = f(x),工作點(diǎn),工作點(diǎn) y0=f(x10 , x20)處展開成泰勒處展開成泰勒級(jí)數(shù),并忽略二次項(xiàng)級(jí)數(shù),并忽略二次項(xiàng)20210120102010,xxxfxxxfxxfyxx2211xKxKy2.1 線性系統(tǒng)時(shí)域模型-非線性數(shù)學(xué)模型的線性化24【例例】將將y=x2 在在 x=2 處和處和 x=-1處線性化。處線性化。 000 xxdxxdfxfyx xdxxdf22x44)2(44)2)(2( )2(xxxyyy1x12)1)(2(1)1)(1
17、( )1(xxxyyy2.1 線性系統(tǒng)時(shí)域模型-非線性數(shù)學(xué)模型的線性化25l 只只適用于不太嚴(yán)重的非線性系統(tǒng),其非線性函數(shù)適用于不太嚴(yán)重的非線性系統(tǒng),其非線性函數(shù)是是可以利用可以利用泰勒級(jí)數(shù)展開泰勒級(jí)數(shù)展開的的l 實(shí)際實(shí)際運(yùn)行情況是在某個(gè)平衡點(diǎn)運(yùn)行情況是在某個(gè)平衡點(diǎn)( (即靜態(tài)工作點(diǎn)即靜態(tài)工作點(diǎn)) )附附近,近,且變量且變量只能在小范圍內(nèi)只能在小范圍內(nèi)變化變化l 不同不同靜態(tài)工作點(diǎn)得到的方程是不同靜態(tài)工作點(diǎn)得到的方程是不同的的l 對(duì)于對(duì)于嚴(yán)重的非線性,例如繼電特性,因?yàn)樘幪幉粐?yán)重的非線性,例如繼電特性,因?yàn)樘幪幉粷M足滿足泰勒泰勒級(jí)數(shù)展開的條件,故不能做線性化級(jí)數(shù)展開的條件,故不能做線性化處理處
18、理l 線性化線性化后得到的是增量后得到的是增量微分方程微分方程 幾點(diǎn)注意:幾點(diǎn)注意:2.1 線性系統(tǒng)時(shí)域模型-非線性數(shù)學(xué)模型的線性化262.2 復(fù)習(xí)拉普拉斯變換 傅里葉變換傅里葉變換與拉普拉斯變換用途:與拉普拉斯變換用途:l 是是工程實(shí)踐中用來(lái)求解線性常微分工程實(shí)踐中用來(lái)求解線性常微分方程的簡(jiǎn)便方程的簡(jiǎn)便工具工具l 是是建立系統(tǒng)在復(fù)數(shù)域和頻率域的數(shù)建立系統(tǒng)在復(fù)數(shù)域和頻率域的數(shù)學(xué)模型的學(xué)模型的數(shù)學(xué)基礎(chǔ)數(shù)學(xué)基礎(chǔ)272.2 復(fù)習(xí)拉普拉斯變換 傅里葉級(jí)數(shù)傅里葉級(jí)數(shù)周期為周期為T的任一周期函數(shù)的任一周期函數(shù)f(t),如果,如果滿足下面的狄里赫萊條滿足下面的狄里赫萊條件:件:(1)在一個(gè)周期內(nèi)有)在一個(gè)周
19、期內(nèi)有有限個(gè)間斷點(diǎn)有限個(gè)間斷點(diǎn)(2)在一個(gè)周期內(nèi)有)在一個(gè)周期內(nèi)有有限個(gè)極值點(diǎn)有限個(gè)極值點(diǎn)(3)絕對(duì)可積)絕對(duì)可積 則:則:), 2 , 1(,sin)(2), 2 , 1 , 0(,cos)(22/2/2/2/ntdtntfbntdtntfaTTnTTn10)sincos(21)(nnntnbtnaatf其中:其中:282.2 復(fù)習(xí)拉普拉斯變換 傅里葉級(jí)數(shù)的復(fù)數(shù)形式傅里葉級(jí)數(shù)的復(fù)數(shù)形式根據(jù)歐拉公式:根據(jù)歐拉公式:10)sincos(21)(nnntnbtnaatftnjtnetjnsincos2costjntjneetnjeetntjntjn2sin可得:可得: tjnnnectf), 2,
20、 1, 0,2()(122nTdtetfTcTTtjnn(傅里葉級(jí)數(shù)(傅里葉級(jí)數(shù)的復(fù)數(shù)的復(fù)數(shù)形式)形式)其中:其中:292.2 復(fù)習(xí)拉普拉斯變換 非正弦非正弦周期函數(shù)的展開周期函數(shù)的展開非正弦周期函數(shù)非正弦周期函數(shù):矩形波矩形波tttu0, 10, 1)(展開得:展開得:,7sin714,5sin514,3sin314,sin4tttt-11-tuO1) 12sin() 12(4)(ntnntu即:即:302.2 復(fù)習(xí)拉普拉斯變換tusin4,7sin714,5sin514,3sin314,sin4tttt312.2 復(fù)習(xí)拉普拉斯變換)3sin31(sin4ttu,7sin714,5sin51
21、4,3sin314,sin4tttt322.2 復(fù)習(xí)拉普拉斯變換)5sin513sin31(sin4tttu,7sin714,5sin514,3sin314,sin4tttt332.2 復(fù)習(xí)拉普拉斯變換)7sin715sin513sin31(sin4ttttu可以看出,不同頻率的波可以合成方波可以看出,不同頻率的波可以合成方波342.2 復(fù)習(xí)拉普拉斯變換 傅里葉積分傅里葉積分l 周期函數(shù)只要滿足狄氏條件,便可展開為傅里葉級(jí)數(shù)周期函數(shù)只要滿足狄氏條件,便可展開為傅里葉級(jí)數(shù)l 傅里葉級(jí)數(shù)展開說(shuō)明了周期為傅里葉級(jí)數(shù)展開說(shuō)明了周期為T的函數(shù)僅包含離散的頻率的函數(shù)僅包含離散的頻率成分,即可由一系列成分,
22、即可由一系列角頻率角頻率0=2/T為間隔的離散頻率所為間隔的離散頻率所形成的簡(jiǎn)諧波合成(求和)形成的簡(jiǎn)諧波合成(求和)l 當(dāng)當(dāng)T越來(lái)越大時(shí),越來(lái)越大時(shí),0越來(lái)越小,當(dāng)越來(lái)越小,當(dāng)T趨于無(wú)窮大時(shí),周期趨于無(wú)窮大時(shí),周期函數(shù)就變成了非周期函數(shù),其頻譜將在函數(shù)就變成了非周期函數(shù),其頻譜將在w上連續(xù)取值上連續(xù)取值l 非周期函數(shù)可以看成周期非周期函數(shù)可以看成周期T趨于無(wú)窮大,而趨于無(wú)窮大,而角頻率角頻率0趨于趨于0的周期函數(shù)的周期函數(shù)l 一個(gè)非周期函數(shù)將包含所有的頻率成分,離散的求和就一個(gè)非周期函數(shù)將包含所有的頻率成分,離散的求和就變成了連續(xù)函數(shù)的積分變成了連續(xù)函數(shù)的積分352.2 復(fù)習(xí)拉普拉斯變換 傅
23、里葉積分傅里葉積分周期周期T很大時(shí),各相鄰諧波之差很大時(shí),各相鄰諧波之差 =(n+1) 0 -n 0 =0很小,很小,用用替代替代n 0 ,有有 tjectfdtetfcTTtj22)(2tjTTtjedtetftf22)(2)( tjTTtjedtetf22)(21dedtetftftjtj)(21)(0,T362.2 復(fù)習(xí)拉普拉斯變換 傅里葉變換傅里葉變換dedtetftftjtj)(21)(令令dtetfFtj)()(則則deFtftj)(21)(傅里葉變換對(duì)傅里葉變換對(duì)372.2 復(fù)習(xí)拉普拉斯變換 拉普拉斯變換拉普拉斯變換 dtetfdteetfFtjtjt00)()(令令s = +j
24、 )()(0sFdtetfFst deFetftjt21)( jjsttjdsesFjdeFtf2121)(382.2 復(fù)習(xí)拉普拉斯變換 拉普拉斯變換的定義拉普拉斯變換的定義設(shè)設(shè)函數(shù)函數(shù) f(t)當(dāng)當(dāng) t 0 時(shí)時(shí)有定義,有定義,設(shè)設(shè)原函數(shù)象函數(shù)且且積分存在,則稱積分存在,則稱F(s)是是f(t)的拉普拉斯變換。簡(jiǎn)稱拉氏變的拉普拉斯變換。簡(jiǎn)稱拉氏變換換。其中。其中s = +j。 dtetftfLsFst0F(s)稱為稱為 f(t)的的拉氏逆變換。記為:拉氏逆變換。記為: tfLtf1 dtetfsFst0)( jjstdsesFjtf21)(392.2 復(fù)習(xí)拉普拉斯變換 兩個(gè)變換的理解兩個(gè)變換
25、的理解l傅氏變換是的拉氏變換一個(gè)特殊情況,傅氏變換的條件苛傅氏變換是的拉氏變換一個(gè)特殊情況,傅氏變換的條件苛刻,但具有實(shí)際物理刻,但具有實(shí)際物理意義意義l是是能進(jìn)行傅氏變換的函數(shù)(或者是信號(hào)),一定能分解成能進(jìn)行傅氏變換的函數(shù)(或者是信號(hào)),一定能分解成多種正弦函數(shù)(信號(hào))的多種正弦函數(shù)(信號(hào))的疊加疊加l拉拉氏變換則通過(guò)乘上一個(gè)指數(shù)函數(shù),降低了傅氏變換的氏變換則通過(guò)乘上一個(gè)指數(shù)函數(shù),降低了傅氏變換的要要求求l雖然雖然沒有直接物理意義,但卻能把微分方程變成代數(shù)方程,沒有直接物理意義,但卻能把微分方程變成代數(shù)方程,在沒有電腦的時(shí)代,大大化簡(jiǎn)了微分方程的在沒有電腦的時(shí)代,大大化簡(jiǎn)了微分方程的求解,
26、逐漸求解,逐漸變變成了一種成了一種計(jì)算方法計(jì)算方法402.2 復(fù)習(xí)拉普拉斯變換 幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換(1) (1) 單位階躍函數(shù)單位階躍函數(shù) 00011ttt ssedtetLstst11000jsl 階躍函數(shù)階躍函數(shù) 000ttRtf sRseRdteRtfLstst0001(t)t10f(t)tR412.2 復(fù)習(xí)拉普拉斯變換 幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換(2) (2) 單位斜坡函數(shù)單位斜坡函數(shù) tttf10f(t)t0jsl 斜坡斜坡函數(shù)函數(shù) 000ttRttf0f(t)tR 2sRtfL 20200010ssedtsestedttetfLststs
27、tst422.2 復(fù)習(xí)拉普拉斯變換 幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換(3) (3) 指數(shù)函數(shù)指數(shù)函數(shù) ssedtedteetfLtstsstt1000 tetf432.2 復(fù)習(xí)拉普拉斯變換 幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換(4) (4) 單位單位脈沖函數(shù)脈沖函數(shù) 000111lim0tttttt 100000dttedtetdtetsFssstl 脈沖函數(shù)脈沖函數(shù)( (強(qiáng)度為強(qiáng)度為A)A) 00011lim0ttttAtAtft AsF442.2 復(fù)習(xí)拉普拉斯變換 幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換(5)(5)正弦正弦 余弦余弦函數(shù)函數(shù) 2costjtjeet
28、tf22000011212121coscossssjsjsjesjedtedtedtettLtsjtsjtsjtsjst jeettftjtj2sin22000011212121sinsinssjsjjsjesjejdtedtejdtettLtsjtsjtsjtsjst452.2 復(fù)習(xí)拉普拉斯變換 拉氏變換拉氏變換的性質(zhì)的性質(zhì)(1)(1)線性性質(zhì)線性性質(zhì)(2)(2)疊加性質(zhì)疊加性質(zhì) sFktfLktfkL sFsFtfLtfLtftfL212121462.2 復(fù)習(xí)拉普拉斯變換 拉氏變換拉氏變換的性質(zhì)的性質(zhì)(3) (3) 微分微分性質(zhì)性質(zhì) .0000021222fsfssFstfdtdLfsfs
29、FstfdtdLfssFtfdtdLnnnnn 00)1()2(nnfsf472.2 復(fù)習(xí)拉普拉斯變換 拉氏變換拉氏變換的性質(zhì)的性質(zhì)(4)(4)積分性質(zhì)積分性質(zhì) nttntttssFdfLssFddfLssFdfL 002000.482.2 復(fù)習(xí)拉普拉斯變換 拉氏變換拉氏變換的性質(zhì)的性質(zhì)(5) (5) 時(shí)間平移時(shí)間平移(6) (6) 復(fù)位復(fù)位移移 sFettfLs1 sFtfeLs492.2 復(fù)習(xí)拉普拉斯變換 拉氏變換拉氏變換的性質(zhì)的性質(zhì)(7)(7)初值定理初值定理(8) (8) 終終值定理值定理?xiàng)l件: 在虛軸(除原點(diǎn))及其右半平面上沒有極點(diǎn)。 ssFtfst limlim0 tfssFts
30、limlim0502.2 復(fù)習(xí)拉普拉斯變換 拉氏變換拉氏變換的性質(zhì)的性質(zhì)(9)(9)實(shí)數(shù)卷積實(shí)數(shù)卷積 dtffLsFsFt20121 tftfLdtffLt21102512.2 復(fù)習(xí)拉普拉斯變換例:求例:求 f (t)=e-t sint 的拉氏變換的拉氏變換 sFtfeLs22sinstL22sinsteLs22000011212121sinsinssjsjjsjesjejdtedtejeteteLtsjtsjtsjtsjsttt復(fù)位移復(fù)位移方法二:方法二:方法一:方法一:522.2 復(fù)習(xí)拉普拉斯變換 幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換幾個(gè)簡(jiǎn)單函數(shù)的拉氏變換f(t)F(s)f(t)F(s)1t21scos
31、atetsinatet22()sasa22()sa22sate22sssintcos t1s1sa( ) t1( ) t532.2 復(fù)習(xí)拉普拉斯變換 常用拉氏變換常用拉氏變換 1t st1121st 32121st121!1nstnset121sett22sinst22sinstet22cossst22cossstet2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型54 線性系統(tǒng)的輸入線性系統(tǒng)的輸入輸出傳遞函數(shù)描述輸出傳遞函數(shù)描述彈簧阻尼系統(tǒng)彈簧阻尼系統(tǒng)傳遞函數(shù)傳遞函數(shù)線性定常系統(tǒng)在初始條件為零的情況下,線性定常系統(tǒng)在初始條件為零的情況下,輸出的拉氏變換與輸入的拉氏變換的比值。輸出的拉氏變換與輸入的拉氏變換的
32、比值。)()()()(22tFtkxdttdxfdttxdm )()(0002sFsXkxsXsfxxssXsm等式兩邊同時(shí)作拉氏變換等式兩邊同時(shí)作拉氏變換假設(shè)初始條件為零假設(shè)初始條件為零 )()(2sFsXksXsfsXsm kfsmssFsXsG212.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型55 傳遞函數(shù)的特點(diǎn):傳遞函數(shù)的特點(diǎn):l 只有只有線性系統(tǒng)才有此線性系統(tǒng)才有此概念概念l 傳遞函數(shù)傳遞函數(shù)與輸入、輸出無(wú)關(guān),但可由輸入、與輸入、輸出無(wú)關(guān),但可由輸入、輸出描述輸出描述l 零零初始條件(線性系統(tǒng)與初始條件無(wú)關(guān)初始條件(線性系統(tǒng)與初始條件無(wú)關(guān))傳遞函數(shù)傳遞函數(shù)線性定常系統(tǒng)在初始條件為零的情況下,線性定
33、常系統(tǒng)在初始條件為零的情況下,輸出的拉氏變換與輸入的拉氏變換的輸出的拉氏變換與輸入的拉氏變換的比值比值2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型56 RLCRLC網(wǎng)絡(luò)網(wǎng)絡(luò)i(t)LRui(t)Cuo(t)()()()(22tutudttduRCdttudLCiooo )()(0002sUsUusUsRCuussUsLCiOOOOOO假設(shè)初始條件為零假設(shè)初始條件為零 )()(2sUsUsUsRCsUsLCiOOO 112RCsLCssUsUsGiO2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型57l 彈簧阻尼系統(tǒng)彈簧阻尼系統(tǒng)l RLCRLC網(wǎng)絡(luò)網(wǎng)絡(luò))()()()(22tFtkxdttdxfdttxdm kfsmssFs
34、XsG21)()()()(22tutudttduRCdttudLCiooo 112RCsLCssUsUsGiO1kRCfLCm相似系統(tǒng)相似系統(tǒng) 相似變量相似變量 相似相似系統(tǒng)與相似系統(tǒng)與相似變量變量2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型58 復(fù)數(shù)阻抗復(fù)數(shù)阻抗 Rtitu RsIsU RsIsUsG dttiCtu1 dttdiLtu CssIsU1 CssIsUsG1 LssIsU LssIsUsGR+)(tui(t)Li(t)(tu+C)(tui(t)+RZRCsZC1LsZL2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型59【例例】LRC無(wú)源網(wǎng)絡(luò),寫出輸入無(wú)源網(wǎng)絡(luò),寫出輸入ui(t)與輸出與輸出uO(t)之間
35、的關(guān)系之間的關(guān)系i(t)LRui(t)Cuo(t) 112RCsLCssUsUsGiO復(fù)阻抗的串并聯(lián)等同于電阻復(fù)阻抗的串并聯(lián)等同于電阻的串并聯(lián)的串并聯(lián) 11112RCsLCsCsRLsCssUsUsGiOi(t)LsRui(t)1/(Cs)uo(t)2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型60【例例】試求圖中所示試求圖中所示RC網(wǎng)絡(luò)的傳遞函數(shù)網(wǎng)絡(luò)的傳遞函數(shù)i(t)R1ui(t)uo(t)R2C ZRRsUsUsGiO221111111CsRRCsRCsRZ121212112211RRCsRRCsRRCsRRRR2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型61【例例】試求圖中所示試求圖中所示RC網(wǎng)絡(luò)的傳遞函數(shù)網(wǎng)絡(luò)的
36、傳遞函數(shù)R1ui(t)C1uo(t)R2C2R1ui(t)C1uo(t)R2C2i(t)i1(t)i2(t) sCRsCsUsUABO222112.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型62R1ui(t)C1uo(t)R2C2ABi(t)i1(t)i2(t)【例例】試求圖中所示試求圖中所示RC網(wǎng)絡(luò)的傳遞函數(shù)網(wǎng)絡(luò)的傳遞函數(shù)1122sCR 1RZZsUsUABABiABsCsCRsCsCRZAB1221221111112122112212122sCRCRCRsCCRRsCR 1121221122121sCRCRCRsCCRRsUsUsUsUsUsUsGiABABOiO2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型63【例
37、例】試求圖中所示試求圖中所示RC網(wǎng)絡(luò)的傳遞函數(shù)網(wǎng)絡(luò)的傳遞函數(shù)R1ui(t)C1uo(t)R2C2ABi(t)i1(t)i2(t)R1ui(t)C1uo(t)R2C2u1(t)u1(t) 1111222221sCRsCRsCsUsUO 1111111111sCRsCRsCsUsUi 1122112212111sCRCRsCCRRsUsUsUsUsUsUsGiOiO 1121221122121sCRCRCRsCCRRsG比較:比較:2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型64典型元部件的傳遞函數(shù)典型元部件的傳遞函數(shù)電位器電位器1( )( )u tKt1maxEK1( )( )( )U sG sKs1211
38、21( )( )(t)K (t)(t)K(t)u tu tu1( )( )( )U sG sKs2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型651max( )( )K(t)Etu t( )(1)pppplpEu tRRRRRRmaxmaxmax( )( )( )11( )plEtu tRtRtmax( )pptRR典型元部件的傳遞函數(shù)典型元部件的傳遞函數(shù)電位器電位器2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型66【例例】求比例積分控制器的傳遞函數(shù)求比例積分控制器的傳遞函數(shù)R1R0uii1- -+ +CR2i2BuO0iiuu典型元部件的傳遞函數(shù)典型元部件的傳遞函數(shù)有源網(wǎng)絡(luò)有源網(wǎng)絡(luò)2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型67R
39、1R0uii1- -+ +CR2i2BuO0iiuu【例例】求比例積分控制器的傳遞函數(shù)求比例積分控制器的傳遞函數(shù)VuB02.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型68【例例】求比例積分控制器的傳遞函數(shù)求比例積分控制器的傳遞函數(shù)R1R0uii1- -+ +CR2i2BuOR1uii1CR2i2BuO0V21ii VuB02.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型69R1uii1CR2i2BuO0V【例例】求比例積分控制器的傳遞函數(shù)求比例積分控制器的傳遞函數(shù) CsRCsRZZZsIZsIsUsUsGiO12121122111RZ CsRZ12221ii 110ZsIsUi 220ZsIsUO2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)
40、學(xué)模型70【例例】求比例微分控制器的傳遞函數(shù)求比例微分控制器的傳遞函數(shù)R1R0uii1- -+ +CR2i2BuOR1uii1CR2i2BuO0V1111CsRRZ22RZ 11112112121122CsRRRCsRRRZZZsIZsIsUsUsGiO2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型71 微分方程推廣到高階系統(tǒng)微分方程推廣到高階系統(tǒng) tcatcdtdatcdtdatcdtdannnnnn11110.傳遞函數(shù)傳遞函數(shù) sNsMasasasabsbsbsbsRsCsGnnnnmmmm11101110. 0.1110mmmmbsbsbsbsM 0.1110nnnnasasasasN trbtrdt
41、dbtrdtdbtrdtdbmmmmmm11110.G(s)的零點(diǎn)的零點(diǎn)G(s)的極點(diǎn)的極點(diǎn)2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型72 微分方程推廣到高階系統(tǒng)微分方程推廣到高階系統(tǒng)傳遞函數(shù)的零極點(diǎn)形式傳遞函數(shù)的零極點(diǎn)形式 nnnnmmmmasasasabsbsbsbsRsCsG11101110. nmpspspszszszsab.212100njjmiipszsK11zi(i = 0,1, , m)為零點(diǎn)為零點(diǎn)pj(j = 0, 1, , n)為極點(diǎn)為極點(diǎn)K*=b0/a0,傳遞系數(shù),傳遞系數(shù)(根軌跡增益根軌跡增益)傳遞函數(shù)的零極點(diǎn)可以是實(shí)數(shù),也可以是復(fù)數(shù)傳遞函數(shù)的零極點(diǎn)可以是實(shí)數(shù),也可以是復(fù)數(shù)傳遞函
42、數(shù)的傳遞函數(shù)的零極點(diǎn)表示形式在根軌跡法中使用較多零極點(diǎn)表示形式在根軌跡法中使用較多2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型73 微分方程推廣到高階系統(tǒng)微分方程推廣到高階系統(tǒng)傳遞函數(shù)的時(shí)間常數(shù)形式傳遞函數(shù)的時(shí)間常數(shù)形式njjmiipszsK11zi(i = 0,1, , m)為零點(diǎn)為零點(diǎn)pj(j = 0, 1, , n)為極點(diǎn)為極點(diǎn)K*=b0/a0,傳遞系數(shù),傳遞系數(shù)(根軌跡增益根軌跡增益)njjjmiiisppszzK111111njjmiisTsK1111njjmiipzKK11* i, Ti時(shí)間常數(shù);時(shí)間常數(shù);K傳遞系數(shù)或增益?zhèn)鬟f系數(shù)或增益?zhèn)鬟f函數(shù)傳遞函數(shù)的時(shí)間表示形式在頻率法中使用較多的時(shí)間表示
43、形式在頻率法中使用較多2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)74 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié):運(yùn)動(dòng)規(guī)律相同,具有相同的數(shù)學(xué)模型典型環(huán)節(jié):運(yùn)動(dòng)規(guī)律相同,具有相同的數(shù)學(xué)模型l 比例環(huán)節(jié)(放大環(huán)節(jié)):輸出以一定比例復(fù)現(xiàn)輸入比例環(huán)節(jié)(放大環(huán)節(jié)):輸出以一定比例復(fù)現(xiàn)輸入 tuKty KsUsYsGR1R0ui(t)i1- -+ +R2i2BuO(t) KRRsUsUsGiO122.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)75 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型l 一階慣性環(huán)節(jié)一階慣性環(huán)節(jié) tuKtytydtd 1sKsUsYsG 時(shí)間常數(shù);時(shí)間常數(shù);K比例系數(shù)比例系
44、數(shù)輸出量不能立即跟隨輸入量變化,存在時(shí)間上的延遲,輸出量不能立即跟隨輸入量變化,存在時(shí)間上的延遲,可以用可以用 來(lái)量度來(lái)量度2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)76 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型l 一階慣性環(huán)節(jié)一階慣性環(huán)節(jié) 1sKsUsYsGRui(t)Cuo(t)i(t)dttiCtudttiCRtituOi)(1)()(1)()( tuKtytydtd)()()(tutudttduRCiOO 11RCssUsUsGiO77 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 一階一階慣性環(huán)節(jié)慣性環(huán)節(jié) 1sKsUsYsGiO )(
45、1 ttui ssUi1 ssKsUsGsUiO11stL1)( 1seLt1 sFsFtfLtfLtftfL212121Rui(t)Cuo(t)i(t)78 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 一階一階慣性環(huán)節(jié)慣性環(huán)節(jié) ssKsUsGsUiO11sBsA1sssBAs11ssBsBA1KBBA0KBKA 1111ssKsKsKsUOstL1)( 1seLt1 tOOeKsULtu11Rui(t)Cuo(t)i(t)79 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 一階一階慣性環(huán)節(jié)慣性環(huán)節(jié) te
46、Kty1 tuKtytydtd )( 1 ttui RCtOetu1Rui(t)Cuo(t)i(t)80 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 積分環(huán)節(jié)積分環(huán)節(jié) sKUssY tuKtydtd dttuKty或或 sKsUsYsGK比例系數(shù)比例系數(shù) ttu1 ssU1例:例: 2sKsUsGsY KtsYLty10y(t)tu(t)y(t)=Kt81 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 積分環(huán)節(jié)積分環(huán)節(jié)Rui(t)i1- -+ +Ci2BuO(t) dttuKty sKsUsYsG dtt
47、duCRtuOi dttuRCtuiO1 sRCRCssG11RCK182 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 微分環(huán)節(jié)微分環(huán)節(jié) txdtdty 時(shí)間常數(shù)時(shí)間常數(shù)純微分純微分一階微分一階微分二階微分二階微分 ssG 1 ssG 1222sssG1 , 0 ttx1 ssX1 ssG sX tty83 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 近似微分環(huán)節(jié)近似微分環(huán)節(jié)例:例:RC串聯(lián)電路串聯(lián)電路Rui(t)Cuo(t)i(t) 11RCsRCsRCsRsG 1TsTssXsYsGT為時(shí)間常數(shù)為時(shí)
48、間常數(shù)84 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 近似微分環(huán)節(jié)近似微分環(huán)節(jié)例:實(shí)際的比例微分電路例:實(shí)際的比例微分電路R2ui(t)Cuo(t)i(t)R1 sURZRsUiO121111111CsRRCsRCsRZ 11TsTssUsUsGiOCRT1212RRR85 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 二階振蕩環(huán)節(jié)二階振蕩環(huán)節(jié)彈簧阻尼系統(tǒng):彈簧阻尼系統(tǒng): tKutytydtdtydtd2222LRC電路:電路: kfsmssG21 112RCsLCssG振蕩環(huán)節(jié)的微分方程:振蕩環(huán)節(jié)的微
49、分方程:傳遞函數(shù):傳遞函數(shù): 1222ssKsXsYsG時(shí)間常數(shù)形式時(shí)間常數(shù)形式 2222nnnssKsXsYsG零極點(diǎn)形式零極點(diǎn)形式86 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 二階振蕩環(huán)節(jié)二階振蕩環(huán)節(jié)87 典型環(huán)節(jié)的數(shù)學(xué)模型典型環(huán)節(jié)的數(shù)學(xué)模型2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型-典型環(huán)節(jié)典型環(huán)節(jié)l 純滯后環(huán)節(jié)純滯后環(huán)節(jié)輸出信號(hào)比輸入信號(hào)遲后一段時(shí)間輸出信號(hào)比輸入信號(hào)遲后一段時(shí)間 sesXsYsG txty 滯后滯后時(shí)間常數(shù);時(shí)間常數(shù); 0dtetxsYst 0dexsYs 0dexesYsst sXesYs 對(duì)微分方程進(jìn)行拉氏變換,得到以對(duì)微分
50、方程進(jìn)行拉氏變換,得到以s s為變量的代數(shù)方程,為變量的代數(shù)方程,方程中的初始值應(yīng)取系統(tǒng)在方程中的初始值應(yīng)取系統(tǒng)在t=0t=0時(shí)刻的對(duì)應(yīng)時(shí)刻的對(duì)應(yīng)值值 求出系統(tǒng)輸出變量的求出系統(tǒng)輸出變量的表達(dá)式表達(dá)式 將輸出變量的表達(dá)式展開成部分分式將輸出變量的表達(dá)式展開成部分分式( (比較系數(shù)比較系數(shù)法、留數(shù)法法、留數(shù)法) ) 對(duì)部分分式進(jìn)行反變換,即得微分方程的對(duì)部分分式進(jìn)行反變換,即得微分方程的解解2.3 控制系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型 用拉氏變換及其反變換解微分方程的步驟用拉氏變換及其反變換解微分方程的步驟89 控制系統(tǒng)結(jié)構(gòu)圖的基本概念控制系統(tǒng)結(jié)構(gòu)圖的基本概念2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖l 結(jié)構(gòu)圖又稱
51、為框圖、方框圖、方塊圖結(jié)構(gòu)圖又稱為框圖、方框圖、方塊圖l 描述系統(tǒng)各元件間信號(hào)傳遞關(guān)系的數(shù)學(xué)圖形描述系統(tǒng)各元件間信號(hào)傳遞關(guān)系的數(shù)學(xué)圖形l 結(jié)構(gòu)圖給出了信息傳遞的方向結(jié)構(gòu)圖給出了信息傳遞的方向l 結(jié)構(gòu)圖給出了輸入輸出的定量關(guān)系結(jié)構(gòu)圖給出了輸入輸出的定量關(guān)系系統(tǒng)或環(huán)節(jié)系統(tǒng)或環(huán)節(jié)輸入輸入輸出輸出x(t)y(t)G(s)X(s)Y(s) sXsYsG sXsGsY90 結(jié)構(gòu)圖的組成結(jié)構(gòu)圖的組成2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖l 信號(hào)線信號(hào)線X(s)x(t)u(t), U(s)l 引出點(diǎn)引出點(diǎn)(分支點(diǎn)、測(cè)量點(diǎn)分支點(diǎn)、測(cè)量點(diǎn))l 比較點(diǎn)比較點(diǎn)(綜合點(diǎn)、相加點(diǎn)綜合點(diǎn)、相加點(diǎn))l 方框(環(huán)節(jié))方框(環(huán)節(jié))u
52、(t), U(s)u(t), U(s)u(t), U(s)x(t), X(s)b(t), B(s)x(t) b(t)X(s) B(s) G(s)X(s)x(t)Y(s)y(t)91 結(jié)構(gòu)圖的建立結(jié)構(gòu)圖的建立2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖i(t)R1ui(t)uo(t)R2Ci2(t)i1(t) 11ioUsIs RUs 2oUsI s R 2111IsIs RCs 12I sIsIsUi(s)Uo(s)I(s)2RI1(s)I2(s)Cs1RI1(s)11R92 結(jié)構(gòu)圖的建立結(jié)構(gòu)圖的建立2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖R1U1(s)1/C1sU2(s)R2U3(s)1/C2sI1(s)I
53、2(s) sIsCsU2221 sUsURsI23221 sIsIsCsU21131 sUsURsI31111U2(s)sC21I2(s)21RU3(s)sC1111RU1(s)I1(s)93 結(jié)構(gòu)圖的建立結(jié)構(gòu)圖的建立2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖R1U1(s)1/C1sU2(s)R2U3(s)1/C2sI1(s)I2(s) sUsGsU12U2(s)sC21I2(s)21RU3(s)sC1111RU1(s)I1(s)G(s)U1(s)U2(s)94 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖原則:變換前、后的數(shù)學(xué)關(guān)系原則:變換前、后的數(shù)學(xué)關(guān)系(輸入量、輸出量)保持
54、不變。輸入量、輸出量)保持不變。U1(s)U2(s)G1(s)U3(s)G2(s)U4(s)G3(s)l 串聯(lián)方框串聯(lián)方框 sUsGsU112 sUsGsU223 sUsGsU334 sUsGsGsGsU13214 sUsUsGsGsGsG14321 niisGsG1U1(s)U4(s) sGsGsG32195 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖右圖并不是兩個(gè)慣性環(huán)節(jié)右圖并不是兩個(gè)慣性環(huán)節(jié)串聯(lián)串聯(lián)其傳遞函數(shù)為其傳遞函數(shù)為l 串聯(lián)方框串聯(lián)方框R1ui(t)C1uo(t)R2C2ABi(t)i1(t)i2(t)R1ui(t)C1uo(t)R2C2u1(t)u1(t)
55、 sUsUsGiO1121221122121sCRCRCRsCCRR 11112211sCRsCRsUsUsGiO96 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖G1(s)G2(s)C3(s)G3(s)l 并聯(lián)方框并聯(lián)方框 sRsCsG11 sGsGsGsG321 sRsCsCsCsRsCsG321 niisGsG1C2(s)C1(s)R(s)R(s)R(s)R(s)C(s) sRsCsG22 sRsCsG33R(s)C(s) sGsGsG32197 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖l 反饋聯(lián)接反饋聯(lián)接 sEsGsC sHsGsGsRs
56、Cs1 R(s)B(s)H(s)C(s)G(s)E(s) sCsHsB sBsRsE sCsHsRsGsC當(dāng)當(dāng)H(s)=1時(shí)時(shí) sGsGsRsCs1 R(s)C(s)G(s)R(s)C(s) sHsGsG198 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖l 反饋聯(lián)接反饋聯(lián)接前向通道:由信號(hào)輸入點(diǎn)伸向信號(hào)引出點(diǎn)的通道。前向通道:由信號(hào)輸入點(diǎn)伸向信號(hào)引出點(diǎn)的通道。反饋通道:把輸出信號(hào)反饋到輸入端的通道。反饋通道:把輸出信號(hào)反饋到輸入端的通道。偏差信號(hào)偏差信號(hào) e(t) 反饋信號(hào)反饋信號(hào) b(t) 前前向向傳遞函數(shù)傳遞函數(shù)G(s) R(s)B(s)H(s)C(s)G(s)E(
57、s)開環(huán)傳遞函數(shù)開環(huán)傳遞函數(shù)閉環(huán)傳遞函數(shù)閉環(huán)傳遞函數(shù) sHsGsGsRsC1 sHsGsEsB99 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖l 比較點(diǎn)和引出點(diǎn)比較點(diǎn)和引出點(diǎn)的的移動(dòng)移動(dòng)比較比較點(diǎn)點(diǎn)后移后移 21XXsGY規(guī)則規(guī)則: 變換前和變換后前向通道中的傳遞函數(shù)的乘積保持變換前和變換后前向通道中的傳遞函數(shù)的乘積保持不變不變 變換前和變換后回路中的傳遞函數(shù)的乘積保持不變變換前和變換后回路中的傳遞函數(shù)的乘積保持不變(1)信號(hào)比較點(diǎn)的信號(hào)比較點(diǎn)的移動(dòng)和互換移動(dòng)和互換100 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖(1)信號(hào)比較點(diǎn)的移動(dòng)和互換)信
58、號(hào)比較點(diǎn)的移動(dòng)和互換比較比較點(diǎn)前移點(diǎn)前移 21XXsGY比較比較點(diǎn)互換點(diǎn)互換321XXXY101 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖(2)引出點(diǎn))引出點(diǎn)的移動(dòng)和互換的移動(dòng)和互換引出點(diǎn)引出點(diǎn)后移后移引出引出點(diǎn)前移點(diǎn)前移102 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖(2)引出點(diǎn))引出點(diǎn)的移動(dòng)和互換的移動(dòng)和互換引出點(diǎn)互換引出點(diǎn)互換結(jié)構(gòu)圖結(jié)構(gòu)圖簡(jiǎn)化的關(guān)鍵是解除環(huán)路與環(huán)路的交叉,使之簡(jiǎn)化的關(guān)鍵是解除環(huán)路與環(huán)路的交叉,使之分開或分開或形成大環(huán)套小形成大環(huán)套小環(huán)的環(huán)的形式形式解除解除交叉連接的有效方法是移動(dòng)相加點(diǎn)或分支點(diǎn)。一般交叉連接的有效方法是移
59、動(dòng)相加點(diǎn)或分支點(diǎn)。一般,相鄰,相鄰的分支點(diǎn)的分支點(diǎn)和綜合點(diǎn)可以彼此和綜合點(diǎn)可以彼此交換交換當(dāng)當(dāng)分支點(diǎn)與綜合點(diǎn)相鄰時(shí),它們的位置就不能作簡(jiǎn)單的分支點(diǎn)與綜合點(diǎn)相鄰時(shí),它們的位置就不能作簡(jiǎn)單的交換交換103 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖例:試?yán)涸嚽蠖嗷芈废到y(tǒng)的閉環(huán)傳遞函數(shù)求多回路系統(tǒng)的閉環(huán)傳遞函數(shù)104 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖例:試?yán)涸嚽蠖嗷芈废到y(tǒng)的閉環(huán)傳遞函數(shù)求多回路系統(tǒng)的閉環(huán)傳遞函數(shù)105 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖例:試?yán)涸嚽蠖嗷芈废到y(tǒng)的閉環(huán)傳遞函數(shù)求多回路系統(tǒng)的閉環(huán)
60、傳遞函數(shù)106 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖例:試?yán)涸嚽蠖嗷芈废到y(tǒng)的閉環(huán)傳遞函數(shù)求多回路系統(tǒng)的閉環(huán)傳遞函數(shù)107 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖例:試?yán)涸嚽蠖嗷芈废到y(tǒng)的閉環(huán)傳遞函數(shù)求多回路系統(tǒng)的閉環(huán)傳遞函數(shù)108 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖例:試對(duì)多回路系統(tǒng)進(jìn)行化簡(jiǎn),并求閉環(huán)傳遞函數(shù)。例:試對(duì)多回路系統(tǒng)進(jìn)行化簡(jiǎn),并求閉環(huán)傳遞函數(shù)。109 結(jié)構(gòu)圖結(jié)構(gòu)圖的等效的等效變換變換2.4 控制系統(tǒng)的結(jié)構(gòu)圖與信號(hào)流圖例:試對(duì)多回路系統(tǒng)進(jìn)行化簡(jiǎn),并求閉環(huán)傳遞函數(shù)。例:試對(duì)多回路系統(tǒng)進(jìn)行化簡(jiǎn),并
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度校園環(huán)境衛(wèi)生承攬保潔服務(wù)合同范本4篇
- 2024版含環(huán)保設(shè)施廠房個(gè)人租賃合同3篇
- 2025年度生產(chǎn)線承包與品牌合作協(xié)議4篇
- 2025年度物流運(yùn)輸合同與貨物運(yùn)輸服務(wù)購(gòu)銷印花稅繳納模板4篇
- 2025年度新能源汽車研發(fā)生產(chǎn)合作協(xié)議書3篇
- 2025年度特色手工藝品代購(gòu)代理合同4篇
- 2024版光纖網(wǎng)絡(luò)建設(shè)與運(yùn)營(yíng)合同
- 2025年度個(gè)人快件物流配送服務(wù)合同范本大全4篇
- 2025年度個(gè)人擔(dān)保個(gè)人創(chuàng)業(yè)貸款合同2篇
- 2025年度個(gè)人股東股權(quán)轉(zhuǎn)讓協(xié)議范本全面保障股權(quán)轉(zhuǎn)讓合法合規(guī)4篇
- 骨科手術(shù)后患者營(yíng)養(yǎng)情況及營(yíng)養(yǎng)不良的原因分析,骨傷科論文
- GB/T 24474.1-2020乘運(yùn)質(zhì)量測(cè)量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實(shí)施方案(一)
- 高血壓患者用藥的注意事項(xiàng)講義課件
- 特種作業(yè)安全監(jiān)護(hù)人員培訓(xùn)課件
- (完整)第15章-合成生物學(xué)ppt
- 太平洋戰(zhàn)爭(zhēng)課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
評(píng)論
0/150
提交評(píng)論