版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2.1.2橢圓的簡橢圓的簡單幾何性質(單幾何性質(3)點與橢圓的位置關系點與橢圓的位置關系1.位置關系:在位置關系:在橢橢圓內、在圓內、在橢橢圓上、在圓上、在橢橢圓外圓外 2.判別方法判別方法(代數法代數法)2200222222222222221(0).(1)1(2)1(3)1xyababxyPabxyPabxyPab設P(x ,y ),橢圓點 在橢圓上;點 在橢圓內;點 在橢圓外;回憶:直線與圓的位置關系回憶:直線與圓的位置關系1.位置關系:相交、相切、相離位置關系:相交、相切、相離2.判別方法判別方法(代數法代數法) 聯立直線與圓的方程聯立直線與圓的方程 消元得到二元一次方程組消元得到二元
2、一次方程組 (1)0直線與圓相交直線與圓相交有兩個公共點;有兩個公共點; (2)=0 直線與圓相切直線與圓相切有且只有一個公共點;有且只有一個公共點; (3)0因為因為所以,方程()有兩個根,所以,方程()有兩個根,那么,相交所得的弦的那么,相交所得的弦的弦長弦長是多少?是多少?則原方程組有兩組解則原方程組有兩組解.- (1)由韋達定理由韋達定理51542121xxxx222212121212126()()2()2 ()425ABxxyyxxxxx x 例例1.已知直線已知直線 y=x- 與橢圓與橢圓x2+4y2=2 ,判斷它,判斷它們的位置關系。們的位置關系。題型一:直線與橢圓的位置關系題型
3、一:直線與橢圓的位置關系21設直線與橢圓交于設直線與橢圓交于P1(x1,y1),P2(x2,y2)兩點,直線兩點,直線P1P2的斜率為的斜率為k弦長公式:弦長公式:221|1|1|ABABABkxxyyk知識點知識點2:弦長公式:弦長公式可推廣到任意二次曲線例例2:已知斜率為:已知斜率為1的直線的直線L過橢圓過橢圓 的右焦點,的右焦點,交橢圓于交橢圓于A,B兩點,求弦兩點,求弦AB之長之長題型二:弦長公式題型二:弦長公式222:4,1,3.abc解 由橢圓方程知( 3,0).F右焦點:3.lyx直線 方程為22314yxxy258 380yxx消 得:1122( ,), (,)A x yB x
4、y設12128 38,55xxxx22212121211()4ABkxxkxxxx85例例3 :已知橢圓:已知橢圓 過點過點P(2,1)引一弦,使弦在這點被引一弦,使弦在這點被 平分,求此弦所在直線的方程平分,求此弦所在直線的方程.解:解:韋達定理韋達定理斜率斜率韋達定理法:利用韋達定理及中點坐標公式來構造韋達定理法:利用韋達定理及中點坐標公式來構造題型三:中點弦問題題型三:中點弦問題例例 3 已知橢圓已知橢圓 過點過點P(2,1)引一弦,使弦在這點被引一弦,使弦在這點被 平分,求此弦所在直線的方程平分,求此弦所在直線的方程.點差法:利用端點在曲線上,坐標滿足方程,作差構造點差法:利用端點在曲
5、線上,坐標滿足方程,作差構造 出中點坐標和斜率出中點坐標和斜率點點作差作差題型三:中點弦問題題型三:中點弦問題知識點知識點3:中點弦問題:中點弦問題點差法:點差法:利用端點在曲線上,坐標滿足方程,作利用端點在曲線上,坐標滿足方程,作差構造出中點坐標和斜率差構造出中點坐標和斜率112200( ,), (,),(,)A x yB xyABM xy設中點,0120122,2xxxyyy則有:1212AByykxx又2211221xyab2222221xyab兩式相減得:2222221211()()0bxxayy1122( ,), (,)A x yB xy在橢圓上,2222221211()()0bxx
6、ayy由2221122212yybxxa 即2111221211AByyxxbkxxayy 2020 xbay 直線和橢圓相交有關弦的中點問題,常用設而不求的思想方法 lmm題型一:直線與橢圓的位置關系題型一:直線與橢圓的位置關系2214 -5400.259 xylxyl例4:已知橢圓,直線 :橢圓上是否存在一點,它到直線 的距離最???最小距離是多少? oxyml解:設直線 平行于 ,224501259xykxy由方程組22258-2250yxkxk消去 ,得題型一:直線與橢圓的位置關系題型一:直線與橢圓的位置關系22064-4 25-2250kk 由,得()450lxyk則 可寫成:12k2
7、5k25解得=,=-25.k 由圖可知 oxy45250mxy直線 為:22402515414145mld直線 與橢圓的交點到直線 的距離最近。且思考:最大的距離是多少?題型一:直線與橢圓的位置關系題型一:直線與橢圓的位置關系2214 -5400.259 xylxyl例4:已知橢圓,直線 :橢圓上是否存在一點,它到直線 的距離最???最小距離是多少?max22402565414145d例例5、如圖,已知橢圓、如圖,已知橢圓 與直線與直線x+y-1=0交交于于A、B兩點,兩點, AB的中點的中點M與橢圓中心連線的與橢圓中心連線的斜率是斜率是 ,試求,試求a、b的值。的值。221axby2 2,AB
8、 22oxyABM22110axbyxy 解:2)210yab xbxb 消 得:(2)(1)0bab b =4-4(abab1122( ,), (,)A x yB x y設121221,bbxxx xabab(,)baABMab ab中點22121 21()4ABkxxx x又MOakb222ba 2212 22 ()4bbabab12,33ab 3、弦中點問題弦中點問題的兩種處理方法:的兩種處理方法: (1)聯立方程組,消去一個未知數,利用韋達定理;)聯立方程組,消去一個未知數,利用韋達定理; (2)設兩端點坐標,代入曲線方程相減可求出弦的斜率。)設兩端點坐標,代入曲線方程相減可求出弦的斜
9、率。 1、直線與橢圓的三種位置關系及判斷方法;、直線與橢圓的三種位置關系及判斷方法;2、弦長的計算方法:、弦長的計算方法:弦長公式:弦長公式: |AB|= = (適用于任何曲線)(適用于任何曲線) 21212411yyyyk )(21221241xxxxk )(小小 結結解方程組消去其中一元得一元二次型方程解方程組消去其中一元得一元二次型方程 0 相交相交練習練習:1、如果橢圓、如果橢圓 的弦被(的弦被(4,2)平分,那)平分,那 么這弦所在直線方程為(么這弦所在直線方程為( )A、x-2y=0 B、x+2y- 4=0 C、2x+3y-12=0 D、x+2y-8=02、y=kx+1與橢圓與橢圓
10、 恰有公共點,則恰有公共點,則m的范圍的范圍( ) A、(、(0,1) B、(、(0,5 ) C、 1,5)(5,+ ) D、(、(1,+ ) 3、過橢圓、過橢圓 x2+2y2=4 的左焦點作傾斜角為的左焦點作傾斜角為300的直線,的直線, 則弦長則弦長 |AB|= _ , DC193622yx1522myx165練習:練習: 已知橢圓已知橢圓5x2+9y2=45,橢圓的右焦點為,橢圓的右焦點為F,(1)求過點求過點F且斜率為且斜率為1的直線被橢圓截得的弦長的直線被橢圓截得的弦長.(2)判斷點判斷點A(1,1)與橢圓的位置關系與橢圓的位置關系,并求以并求以A為中點為中點橢圓的弦所在的直線方程橢
11、圓的弦所在的直線方程.22:(1)195xy解橢圓(2,0)F2lyx直線 :2225945yxxy由2143690 xx得:1212189,714xxxx2212126 111()47kxxxx弦長練習:練習: 已知橢圓已知橢圓5x2+9y2=45,橢圓的右焦點為,橢圓的右焦點為F,(1)求過點求過點F且斜率為且斜率為1的直線被橢圓截得的弦長的直線被橢圓截得的弦長.(2)判斷點判斷點A(1,1)與橢圓的位置關系與橢圓的位置關系,并求以并求以A為中點為中點橢圓的弦所在的直線方程橢圓的弦所在的直線方程.22:(2)5 19 145 解(1,1)A在橢圓內。1122( ,),(,)AMNM x yN x y設以 為中點的弦為且12122,2xxyy22115945xy22225945xy22221212590 xxyy兩式相減得: () ()1212121259MNyyxxkxxyy 59 51(1)9AMNyx 以 為中點的弦為方程為:59140 xy12:( 2,0),(2,0)FF解 橢圓的焦點為200(2,0)60(,)FxyF xy設關于直線的對稱點0000( 1)1226022yxxy 由0064xy解得:(6,4)F124 5FFa2 5a2c 4b 2212016所求橢圓方程為:xy122yxbyxm 分析:存在直線與橢圓交與兩點,且兩交點的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新生入學軍訓心得體會(集合15篇)
- 數學個人教學心得
- 護理禮儀與人際溝通心得體會
- 幼兒園傳染病防控工作計劃
- DB31∕807.2-2015 重點單位保安服務要求 第2部分:特殊勤務保安
- 醫(yī)藥公司年度工作總結
- 2024年研發(fā)外包合同具體條款及服務內容
- 2025煙酒購貨買賣合同模板
- 2025安徽省市區(qū)農民工勞動合同書
- DB45T 2490-2022 羅非魚池塘循環(huán)流水槽式養(yǎng)殖技術規(guī)程
- 【MOOC】油氣地質與勘探-中國石油大學(華東) 中國大學慕課MOOC答案
- 機器學習(山東聯盟)智慧樹知到期末考試答案章節(jié)答案2024年山東財經大學
- 科研設計及研究生論文撰寫智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學
- 控制工程基礎matlab大作業(yè)
- 2023年山東省高中會考數學題學業(yè)水平考試(有答案)
- GA/T 946.4-2011道路交通管理信息采集規(guī)范第4部分:道路交通違法處理信息采集
- RPA初級考試試題附答案
- 公共部門決策的理論與方法第9-14章課件
- 安全生產行政執(zhí)法知識課件
- 人教版八年級上冊 歷史全冊課件【部編教材】
- 2021年四川音樂學院輔導員招聘試題及答案解析
評論
0/150
提交評論