集合與函數(shù)的知識(shí)點(diǎn)_第1頁(yè)
集合與函數(shù)的知識(shí)點(diǎn)_第2頁(yè)
集合與函數(shù)的知識(shí)點(diǎn)_第3頁(yè)
集合與函數(shù)的知識(shí)點(diǎn)_第4頁(yè)
集合與函數(shù)的知識(shí)點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、集合與函數(shù)教學(xué)重點(diǎn):掌握知識(shí)之間的聯(lián)系,洞悉問(wèn)題的考察點(diǎn),能選擇合適的知識(shí)與方法解決問(wèn)題教學(xué)難點(diǎn):含參問(wèn)題的討論,函數(shù)性質(zhì)之間的關(guān)系學(xué)生應(yīng)掌握以下幾點(diǎn):1了解集合的含義與表示,理解集合間的基本關(guān)系,集合的基本運(yùn)算A:能從集合間的運(yùn)算分析出集合的基本關(guān)系B:對(duì)于分類討論問(wèn)題,能區(qū)分取交還是取并2理解函數(shù)的定義,掌握函數(shù)的基本性質(zhì),會(huì)運(yùn)用函數(shù)的圖象理解和研究函數(shù)的性質(zhì)A:會(huì)用定義證明函數(shù)的單調(diào)性、奇偶性B:會(huì)分析函數(shù)的單調(diào)性、奇偶性、對(duì)稱性的關(guān)系3通過(guò)自主知識(shí)梳理,了解自己學(xué)習(xí)的不足,明確知識(shí)的來(lái)龍去脈,把學(xué)習(xí)的內(nèi)容網(wǎng)絡(luò)化、系統(tǒng)化4在解決問(wèn)題的過(guò)程中,通過(guò)自主探究、合作交流,領(lǐng)悟知識(shí)的橫、縱向聯(lián)系

2、,體會(huì)集合與函數(shù)的本質(zhì)5用集合語(yǔ)言可以簡(jiǎn)潔準(zhǔn)確表達(dá)數(shù)學(xué)內(nèi)容6運(yùn)用集合與對(duì)應(yīng)進(jìn)一步描述了函數(shù)的概念,與初中的函數(shù)的定義比較,突出了函數(shù)的本質(zhì)函數(shù)是描述變量之間依賴關(guān)系的重要數(shù)學(xué)模型7掌握函數(shù)的三種表示方法,這三種表示方法有各自的適用范圍,要根據(jù)具體情況選用8研究函數(shù)的性質(zhì)時(shí),一般先從幾何直觀觀察圖象入手,然后運(yùn)用自然語(yǔ)言描述函數(shù)的圖象特征,最后抽象到用數(shù)學(xué)符號(hào)刻畫相應(yīng)的數(shù)量特征,也是數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常使用的方法9交集與并集的區(qū)分,即何時(shí)取交,何時(shí)取并,特別是含參的分類討論問(wèn)題10函數(shù)的單調(diào)性與奇偶性的證明知識(shí)框架“集合與函數(shù)概念”知識(shí)點(diǎn)一、集合有關(guān)概念1. 集合的含義2. 集合的中元素的三個(gè)特

3、性:(1) 元素的確定性如:世界上最高的山(2) 元素的互異性如:由HAPPY的字母組成的集合H,A,P,Y(3) 元素的無(wú)序性: 如:a,b,c和a,c,b是表示同一個(gè)集合3.集合的表示: 如:我校的籃球隊(duì)員,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的籃球隊(duì)員,B=1,2,3,4,5(2) 集合的表示方法:列舉法與描述法。u 注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集) 記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R1) 列舉法:a,b,c2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。xR| x-32 ,x| x-3

4、23) 語(yǔ)言描述法:例:不是直角三角形的三角形4) Venn圖:4、集合的分類:(1) 有限集 含有有限個(gè)元素的集合(2) 無(wú)限集 含有無(wú)限個(gè)元素的集合(3) 空集 不含任何元素的集合例:x|x2=5二、集合間的基本關(guān)系1.“包含”關(guān)系子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2“相等”關(guān)系:A=B (55,且55,則5=5)實(shí)例:設(shè) A=x|x2-1=0 B=-1,1 “元素相同則兩集合相等”即: 任何一個(gè)集合是它本身的子集。AA真子集:如果AB,且A B那就說(shuō)集合A是集合B的真子集,記作AB(或BA

5、)如果 AB, BC ,那么 AC 如果AB 同時(shí) BA 那么A=B3. 不含任何元素的集合叫做空集,記為規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集三、集合的運(yùn)算運(yùn)算類型交 集并 集補(bǔ) 集定 義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集記作AB(讀作A交B),即AB=x|xA,且xB由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集記作:AB(讀作A并B),即AB =x|xA,或xB)設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)SA記作,即

6、CSA=韋恩圖示SA性 質(zhì)AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 二、函數(shù)的有關(guān)概念1函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:AB為從集合A到集合B的一個(gè)函數(shù)記作: y=f(x),xA其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域注意:1定義域:能使函數(shù)式有意義

7、的實(shí)數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零, (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.u 相同函數(shù)的判斷方法:表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));定義域一致 (兩點(diǎn)必須同時(shí)具備)(見課本21頁(yè)相關(guān)例2)2值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3.

8、 函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (xA)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x A)的圖象C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . (2) 畫法A、 描點(diǎn)法:B、 圖象變換法常用變換方法有三種1) 平移變換2) 伸縮變換3) 對(duì)稱變換4區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無(wú)窮區(qū)間(3)區(qū)間的數(shù)軸表示5映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中

9、的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”對(duì)于映射f:AB來(lái)說(shuō),則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。6.分段函數(shù) (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。(2)各部分的自變量的取值情況(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集補(bǔ)充:復(fù)合函數(shù)如果y=f(u)(uM),u=g(x)(xA),則 y=fg(x)=F(x

10、)(xA) 稱為f、g的復(fù)合函數(shù)。 二函數(shù)的性質(zhì)1.函數(shù)的單調(diào)性(局部性質(zhì))(1)增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1x2時(shí),都有f(x1)f(x2),那么就說(shuō)f(x)在區(qū)間D上是增函數(shù).區(qū)間D稱為y=f(x)的單調(diào)增區(qū)間.如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1x2 時(shí),都有f(x1)f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);(2) 圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)

11、格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A) 定義法: 任取x1,x2D,且x1x2; 作差f(x1)f(x2); 變形(通常是因式分解和配方); 定號(hào)(即判斷差f(x1)f(x2)的正負(fù)); 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性)(B)圖象法(從圖象上看升降)(C)復(fù)合函數(shù)的單調(diào)性復(fù)合函數(shù)fg(x)的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8函數(shù)的奇偶性(整體性質(zhì)

12、)(1)偶函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做偶函數(shù)(2)奇函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做奇函數(shù)(3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱利用定義判斷函數(shù)奇偶性的步驟:首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;確定f(x)與f(x)的關(guān)系;作出相應(yīng)結(jié)論:若f(x) = f(x) 或 f(x)f(x) = 0,則f(x)是偶函數(shù);若f(x) =f(x) 或 f(x)f(x) = 0,則f(x)是奇函數(shù)注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定; (2)由 f(-x)f(x)=0或f(x)f(-x)=1來(lái)判定; (3)利用定理,或借助函數(shù)的圖象判定 .9、函數(shù)的解析表達(dá)式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.(2)求函數(shù)的解析式的主要方法有:1) 湊配法2) 待定系數(shù)法3) 換元

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論