初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答第30講從創(chuàng)新構(gòu)造入手_第1頁
初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答第30講從創(chuàng)新構(gòu)造入手_第2頁
初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答第30講從創(chuàng)新構(gòu)造入手_第3頁
初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答第30講從創(chuàng)新構(gòu)造入手_第4頁
初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答第30講從創(chuàng)新構(gòu)造入手_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第三十講 從創(chuàng)新構(gòu)造入手 有些數(shù)學(xué)問題直接求解比較困難,可通過創(chuàng)造性構(gòu)造轉(zhuǎn)化問題而使問題獲解所謂構(gòu)造法,就是綜合運(yùn)用各種知識和方法,依據(jù)問題的條件和結(jié)論給出的信息,把問題作適當(dāng)?shù)募庸ぬ幚順?gòu)造與問題相關(guān)的數(shù)學(xué)模式,揭示問題的本質(zhì),從而溝通解題思路的方法構(gòu)造法是一種創(chuàng)造性思維,是建立在對問題結(jié)構(gòu)特點(diǎn)的深刻認(rèn)識基礎(chǔ)上的 構(gòu)造法的基本形式是以已知條件為“原料”,以所求結(jié)論為“方向”,構(gòu)造一種新的數(shù)學(xué)形式,初中階段常用的構(gòu)造解題的基本方法有: 1構(gòu)造方程; 2構(gòu)造函數(shù); 3構(gòu)造圖形; 4對于存在性問題,構(gòu)造實(shí)例; 5對于錯(cuò)誤的命題,構(gòu)造反例;6構(gòu)造等價(jià)命題等【例題求解】【例1】 設(shè)、都為實(shí)數(shù),滿足,求證

2、: 思路點(diǎn)撥 可以從展開已知等式、按比例性質(zhì)變形已知等式等角度嘗試仔細(xì)觀察已知等式特點(diǎn),、可看作方程的兩根,則,通過構(gòu)造方程揭示題設(shè)條件與結(jié)論的內(nèi)在規(guī)律,解題思路新穎而深刻 注:一般說來,構(gòu)造法包含下述兩層意思:利用抽象的普遍性,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型;利用具體問題的特殊性,給所解決的問題設(shè)計(jì)一個(gè)框架,強(qiáng)調(diào)數(shù)學(xué)應(yīng)用的數(shù)學(xué)建模是前一層意思的代表,而后一層意思的“框架”含義更為廣泛,如方程、函數(shù)、圖形、“抽屜”等 【例2】 求代數(shù)式的最小值思路點(diǎn)撥 用一般求最值的方法很難求出此代數(shù)式的最小值,于是問題轉(zhuǎn)化為:在 軸上求一點(diǎn)C(1,0),使它到兩點(diǎn)A(一1,1)和B(2,3)的距離和(CA+CB)

3、最小,利用對稱性可求出C點(diǎn)坐標(biāo)這樣,通過構(gòu)造圖形而使問題獲解【例3】 已知、為整數(shù),方程的兩根都大于且小于0,求和的值 思路點(diǎn)撥 利用求根公式,解不等式組求出、的范圍,這是解本例的基本思路,解法繁難由于二次函數(shù)與二次方程有深刻的內(nèi)在聯(lián)系,構(gòu)造函數(shù),令,從討論拋物線與軸交點(diǎn)在與0之間所滿足的約束條件入手 【例4】 如圖,在矩形ABCD中,AD=,AB=,問:能否在Ab邊上找一點(diǎn)E,使E點(diǎn)與C、D的連線將此矩形分成三個(gè)彼此相似的三角形?若能找到,這樣的E點(diǎn)有幾個(gè)?若不能找到,請說明理由思路點(diǎn)撥 假設(shè)在AB邊上存在點(diǎn)E,使RtADERtBECRtECD,又設(shè)AE=,則,即,于是將問題轉(zhuǎn)化為關(guān)于的一元

4、二次方程是否有實(shí)根,在一定條件下有幾個(gè)實(shí)根的研究,通過構(gòu)造方程解決問題【例5】 試證:世界上任何6個(gè)人,總有3人彼此認(rèn)識或者彼此不認(rèn)識思路點(diǎn)撥 構(gòu)造圖形解題,我們把“人”看作“點(diǎn)”,把2個(gè)人之間的關(guān)系看作染成顏色的線段比如2個(gè)人彼此認(rèn)識就把連接2個(gè)人的對應(yīng)點(diǎn)的線段染成紅色;2個(gè)人彼此不認(rèn)識,就把相應(yīng)的線段染成藍(lán)色,這樣,有3個(gè)人彼此認(rèn)識就是存在一個(gè)3邊都是紅色的三角形,否則就是存在一個(gè)3邊都是藍(lán)色的三角形,這樣本題就化作:已知有6個(gè)點(diǎn),任何3點(diǎn)不共線,每2點(diǎn)之間用線段連結(jié)起來,并染上紅色或藍(lán)色,并且一條邊只能染成一種顏色證明:不管怎么染色,總可以找出三邊同色的三角形注:“數(shù)缺形時(shí)少直觀,形缺少

5、時(shí)難入微”數(shù)形互助是一種重要的思想方法,主要體現(xiàn)在: (1)幾何問題代數(shù)化; (2)利用圖形圖表解代數(shù)問題; (3)構(gòu)造函數(shù),借用函數(shù)圖象探討方程的解 利用代數(shù)法解幾何題,往往是以較少的量的字母表示相關(guān)的幾何量,根據(jù)幾何圖形性質(zhì)列出代數(shù)式或方程(組),再進(jìn)行計(jì)算或證明 特別地,證明幾何存在性的問題可構(gòu)造方程,利用一元二次方程必定有解的的的代數(shù)模型求證;應(yīng)用為韋達(dá)定理,討論幾何圖形位置的可能性 有些問題可通過改變形式或換個(gè)說法,構(gòu)造等價(jià)命題或輔助命題,使問題清晰且易于把握對于存在性問題,可根據(jù)問題要求構(gòu)造出一個(gè)滿足條件的結(jié)論對象,即所謂的存在性問題的“構(gòu)造性證明”學(xué)歷訓(xùn)練1若關(guān)于的方程的所有根都

6、是比1小的正實(shí)數(shù),則實(shí)數(shù)的取值范圍是 2已知、是四個(gè)不同的有理數(shù),且,那么的值是 3代數(shù)式的最小值為 4A、B、C、D、E、F六個(gè)足球隊(duì)單循環(huán)賽,已知A、B、C、D、E五個(gè)隊(duì)已經(jīng)分別比賽 了5、4、3、2、1場,則還未與B隊(duì)比賽的球隊(duì)是 5若實(shí)數(shù)、滿足,且,則的取值范圍是 6設(shè)實(shí)數(shù)分別、分別滿足,并且,求的值 7已知實(shí)數(shù)、滿足,求證: 8寫出10個(gè)不同的自然數(shù),使得它們中的每個(gè)是這10個(gè)數(shù)和的一個(gè)約數(shù),并說明寫出的10個(gè)自然數(shù)符合題設(shè)條件的理由9求所有的實(shí)數(shù),使得 10若是不全為零且絕對值都小于106的整數(shù)求證: 11已知關(guān)于的方程有四個(gè)不同的實(shí)根,求的取值范圍12設(shè)0,求證13從自然數(shù)l,2,3,354中任取178個(gè)數(shù),試證:其中必有兩個(gè)數(shù),它們的差為177 14已知、是滿足,的實(shí)數(shù),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論