版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第一十六章 二次根式教材分析: 1本單元教學(xué)的主要內(nèi)容: 二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式學(xué)情分析: 新學(xué)期,根據(jù)八年級的實際,首先是先摸清底子,穩(wěn)住學(xué)生,然后根據(jù)學(xué)生學(xué)情分布情況,重新劃分學(xué)習(xí)小組,對新轉(zhuǎn)班過來的學(xué)生,做好各方面的工作,使他們迅速適應(yīng)新環(huán)境,然后,盡快幫他們找到新的學(xué)習(xí)榜樣和新學(xué)伴,幫他們樹立競爭意識和發(fā)展意識以及創(chuàng)新意識,鼓勵大家在新學(xué)期,獲得更大的進(jìn)步,取得更大的發(fā)展。 教學(xué)目標(biāo): 1知識與技能 (1)理解二次根式的概念 (2)理解(a0)是一個非負(fù)數(shù),()2=a(a0),=a(a0) (3)掌握·(a0,b0
2、),=·;=(a0,b>0),=(a0,b>0) (4)了解最簡二次根式的概念并靈活運用它們對二次根式進(jìn)行加減 2過程與方法 (1)先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念再對概念的內(nèi)涵進(jìn)行分析,得出幾個重要結(jié)論,并運用這些重要結(jié)論進(jìn)行二次根式的計算和化簡 (2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運用規(guī)定進(jìn)行計算 (3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運用它進(jìn)行化簡 (4)通過分析前面的計算和化簡結(jié)果,抓住它們的共同特點,給出最簡二次根式的概念利用最簡二次根式的概念,來對相同的二次根式進(jìn)行合并,達(dá)到對二
3、次根式進(jìn)行計算和化簡的目的 3情感、態(tài)度與價值觀 通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力 教學(xué)重點 1二次根式(a0)的內(nèi)涵(a0)是一個非負(fù)數(shù);()2a(a0);=a(a0)及其運用 2二次根式乘除法的規(guī)定及其運用3最簡二次根式的概念 4二次根式的加減運算 教學(xué)難點 1對(a0)是一個非負(fù)數(shù)的理解;對等式()2a(a0)及=a(a0)的理解及應(yīng)用 2二次根式的乘法、除法的條件限制 3利用最簡二次根式的概念把一個二次根式化成最簡二次根式 教學(xué)關(guān)鍵 1潛移默化地培養(yǎng)學(xué)生從具體到一般的推理
4、能力,突出重點,突破難點2培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神單元課時劃分 本單元教學(xué)時間約需11課時,具體分配如下: 161 二次根式 3課時 162 二次根式的乘法 3課時 163 二次根式的加減 3課時 教學(xué)活動、習(xí)題課、小結(jié) 2課時161 二次根式教學(xué)內(nèi)容 二次根式的概念及其運用教學(xué)目標(biāo)知識與技能目標(biāo): 理解二次根式的概念,并利用(a0)的意義解答具體題目過程與方法目標(biāo):提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實際問題情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力教學(xué)重難點
5、關(guān)鍵 1重點:形如(a0)的式子叫做二次根式的概念;2難點與關(guān)鍵:利用“(a0)”解決具體問題教法:1、引導(dǎo)發(fā)現(xiàn)法: 通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法: 在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,
6、提高閱讀能力。3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。媒體設(shè)計:PPT課件,展臺。課時安排:1課時。教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們獨立完成下列三個問題: 問題1:已知反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點的坐標(biāo)是_問題2:如圖,在直角三角形ABC中,AC=3,BC=1,C=90°,那么AB邊的長是_ 老師點評:問題1:橫、縱坐標(biāo)相等,即x=y,所以x2=3因為點在第一象限,所以x=,所以所求點的坐標(biāo)(,) 問題2:由勾
7、股定理得AB=二、探索新知 很明顯、,都是一些正數(shù)的算術(shù)平方根像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式因此,一般地,我們把形如(a0)的式子叫做二次根式,“”稱為二次根號 議一議: 1-1有算術(shù)平方根嗎? 20的算術(shù)平方根是多少? 3當(dāng)a<0,有意義嗎? 例1下列式子,哪些是二次根式,哪些不是二次根式:、(x>0)、-、(x0,y0) 分析:二次根式應(yīng)滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0 解:二次根式有:、(x>0)、-、(x0,y0);不是二次根式的有:、 例2當(dāng)x是多少時,在實數(shù)范圍內(nèi)有意義? 分析:由二次根式的定義可知,被開方數(shù)一定
8、要大于或等于0,所以3x-10,才能有意義 解:由3x-10,得:x當(dāng)x時,在實數(shù)范圍內(nèi)有意義三、應(yīng)用拓展例3當(dāng)x是多少時,+在實數(shù)范圍內(nèi)有意義?分析:要使+在實數(shù)范圍內(nèi)有意義,必須同時滿足中的0和中的x+10 解:依題意,得 由得:x- 由得:x-1 當(dāng)x-且x-1時,+在實數(shù)范圍內(nèi)有意義例4(1)已知y=+5,求的值(答案:2)(2)若+=0,求a2004+b2004的值(答案:)四、歸納小結(jié)本節(jié)課要掌握: 1形如(a0)的式子叫做二次根式,“”稱為二次根號2要使二次根式在實數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù)五、布置作業(yè) 一、選擇題 1下列式子中,是二次根式的是( ) A- B C
9、Dx 2下列式子中,不是二次根式的是( ) A B C D 3已知一個正方形的面積是5,那么它的邊長是( ) A5 B C D以上皆不對 二、填空題 1形如_的式子叫做二次根式 2面積為a的正方形的邊長為_ 3負(fù)數(shù)_平方根 三、綜合提高題 1某工廠要制作一批體積為1m3的產(chǎn)品包裝盒,其高為0.2m,按設(shè)計需要,底面應(yīng)做成正方形,試問底面邊長應(yīng)是多少? 2當(dāng)x是多少時,+x2在實數(shù)范圍內(nèi)有意義? 3若+有意義,則=_4.使式子有意義的未知數(shù)x有( )個 A0 B1 C2 D無數(shù)5.已知a、b為實數(shù),且+2=b+4,求a、b的值答案: 一、1A 2D 3B二、1(a0) 2 3沒有 三、1設(shè)底面邊
10、長為x,則0.2x2=1,解答:x= 2依題意得:,當(dāng)x>-且x0時,x2在實數(shù)范圍內(nèi)沒有意義3. 4B 5a=5,b=-4板書設(shè)計:§16.1.1.二次根式(1)情境引入 例2 學(xué)生板演 二次根式的定義 例3例1 例4 小結(jié)16.1 二次根式(2)教學(xué)內(nèi)容 1(a0)是一個非負(fù)數(shù);2 ()2=a(a0)教學(xué)目標(biāo)知識與技能目標(biāo):理解(a0)是一個非負(fù)數(shù)和()2=a(a0),并利用它們進(jìn)行計算和化簡過程與方法目標(biāo):過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a0)是一個非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a0);最后運用結(jié)論嚴(yán)謹(jǐn)解題情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)
11、培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力教學(xué)重難點關(guān)鍵 1重點:(a0)是一個非負(fù)數(shù);()2=a(a0)及其運用2難點、關(guān)鍵:用分類思想的方法導(dǎo)出(a0)是一個非負(fù)數(shù);用探究的方法導(dǎo)出()2=a(a0)教法:1、引導(dǎo)發(fā)現(xiàn)法: 通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法: 在例題教學(xué)中,引導(dǎo)學(xué)生閱讀、類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式
12、。學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生理解(a0)是一個非負(fù)數(shù)和()2=a(a0),形成有效的學(xué)習(xí)策略。2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。媒體設(shè)計:PPT課件,展臺。課時安排:1課時。教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)口答 1什么叫二次根式? 2當(dāng)a0時,叫什么?當(dāng)a<0時,有意義嗎? 老師點評(略) 二、探究新知 議一議: (a0)是一個什么數(shù)呢? 老師點評: (a0)
13、是一個非負(fù)數(shù) 做一做:根據(jù)算術(shù)平方根的意義填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老師點評:是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,是一個平方等于4的非負(fù)數(shù),因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a0) 例1、 計算1()2 2(3)2 3()2 4()2 分析:我們可以直接利用()2=a(a0)的結(jié)論解題解:()2 =,(3)2 =32·()2=32·5=45,()2=,()2= 三、鞏固練習(xí) 計算下列各式的值:()2 ()2 ()2 ()2 (4)
14、2 四、應(yīng)用拓展 例2、 計算1()2(x0) 2()2 3()2 4()2分析:(1)因為x0,所以x+1>0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)20所以上面的4題都可以運用()2=a(a0)的重要結(jié)論解題 解:(1)因為x0,所以x+1>0 ()2=x+1 (2)a20,()2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 ,=a2+2a+1 (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又(2
15、x-3)204x2-12x+90,()2=4x2-12x+9例3、在實數(shù)范圍內(nèi)分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3分析:(略) 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:1(a0)是一個非負(fù)數(shù); 2()2=a(a0);反之:a=()2(a0)六、布置作業(yè) 一、選擇題 1下列各式中、,二次根式的個數(shù)是( ) A4 B3 C2 D1 2數(shù)a沒有算術(shù)平方根,則a的取值范圍是( ) Aa>0 Ba0 Ca<0 Da=0 二、填空題 1(-)2=_ 2已知有意義,那么是一個_數(shù) 三、綜合提高題 1計算(1)()2 (2)-()2 (3)()2 (4)(-3)2 (5) 2把下
16、列非負(fù)數(shù)寫成一個數(shù)的平方的形式: (1)5 (2)3.4 (3) (4)x(x0)3已知+=0,求xy的值 4在實數(shù)范圍內(nèi)分解下列因式: (1)x2-2 (2)x4-9 3x2-5 答案: 一、1B 2C ; 二、13 2非負(fù)數(shù);三、1(1)()2=9 (2)-()2=-3 (3)()2=×6= ;(4)(-3)2=9×=6 (5)-62(1)5=()2 ;(2)3.4=()2 ;(3)=()2 ; (4)x=()2(x0) 3 xy=34=81; 4.(1)x2-2=(x+)(x-) (2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-); (3)略板書設(shè)
17、計:§16.1.二次根式(2)情境引入 例1 學(xué)生板演 1(a0)是一個非負(fù)數(shù); 例22()2=a(a0); 反之:a=()2(a0) 例3 小結(jié)16.1 二次根式(3)教學(xué)內(nèi)容:a(a0)教學(xué)目標(biāo)知識與技能目標(biāo):理解=a(a0)并利用它進(jìn)行計算和化簡過程與方法目標(biāo): 通過具體數(shù)據(jù)的解答,探究=a(a0),并利用這個結(jié)論解決具體問題情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力教學(xué)重難點關(guān)鍵 1重點:a(a0) 2難點:探究結(jié)論3 關(guān)鍵:講清a0時,a才成立教法:1、引導(dǎo)發(fā)現(xiàn)法: 通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生
18、認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法: 在例題教學(xué)中,引導(dǎo)學(xué)生閱讀類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟a(a0),形成有效的學(xué)習(xí)策略。2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,
19、提高學(xué)生的素質(zhì)。媒體設(shè)計:PPT課件,展臺。課時安排:1課時。教學(xué)過程:一、復(fù)習(xí)引入1形如(a0)的式子叫做二次根式; 2(a0)是一個非負(fù)數(shù); 3()2a(a0) 那么,我們猜想當(dāng)a0時,=a是否也成立呢?下面我們就來探究這個問題 二、探究新知 填空: =_;=_;=_; =_;=_;=_ (老師點評):根據(jù)算術(shù)平方根的意義,我們可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1、化簡 (1) (2) (3) (4)分析:因為(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可運用=a(a0)去化簡解:(1)=3 (2)=
20、4 (3)=5 (4)=3 三、應(yīng)用拓展 例2、 填空:當(dāng)a0時,=_;當(dāng)a<0時,=_,并根據(jù)這一性質(zhì)回答下列問題 (1)若=a,則a可以是什么數(shù)? (2)若=-a,則a可以是什么數(shù)? (3)>a,則a可以是什么數(shù)? 分析:=a(a0),要填第一個空格可以根據(jù)這個結(jié)論,第二空格就不行,應(yīng)變形,使“( )2”中的數(shù)是正數(shù),因為,當(dāng)a0時,=,那么-a0(1)根據(jù)結(jié)論求條件;(2)根據(jù)第二個填空的分析,逆向思想;(3)根據(jù)(1)、(2)可知=a,而a要大于a,只有什么時候才能保證呢?a<0 解:(1)因為=a,所以a0; (2)因為=-a,所以a0;(3)因為當(dāng)a0時=a,要使
21、>a,即使a>a所以a不存在;當(dāng)a<0時,=-a,要使>a,即使-a>a,a<0綜上,a<0例3、當(dāng)x>2,化簡-分析:(略) 四、歸納小結(jié) 本節(jié)課應(yīng)掌握:=a(a0)及其運用,同時理解當(dāng)a<0時,a的應(yīng)用拓展 五、布置作業(yè) 一、選擇題 1的值是( ) A0 B C4 D以上都不對 2a0時,、-,比較它們的結(jié)果,下面四個選項中正確的是( ) A=- B>>- C<<- D->= 二、填空題 1-=_ 2若是一個正整數(shù),則正整數(shù)m的最小值是_ 三、綜合提高題 1先化簡再求值:當(dāng)a=9時,求a+的值,甲乙兩人的解
22、答如下: 甲的解答為:原式=a+=a+(1-a)=1;乙的解答為:原式=a+=a+(a-1)=2a-1=17兩種解答中,_的解答是錯誤的,錯誤的原因是_2若1995-a+=a,求a-19952的值(提示:先由a-20000,判斷1995-a的值是正數(shù)還是負(fù)數(shù),去掉絕對值)3. 若-3x2時,試化簡x-2+。答案:一、1C 2A;二、1-002 25;三、1甲 甲沒有先判定1-a是正數(shù)還是負(fù)數(shù) 2由已知得a-20000,a2000 所以a-1995+=a,=1995,a-2000=19952,所以a-19952=2000 3. 10-x板書設(shè)計:§16.1.二次根式(3)情境引入 例2
23、 學(xué)生板演 a(a0) 例3例1 練習(xí) 小結(jié)教學(xué)反思:162 二次根式的乘除(1)教學(xué)內(nèi)容: ·(a0,b0),反之=·(a0,b0)及其運用教學(xué)目標(biāo) 知識與技能目標(biāo):理解·(a0,b0),=·(a0,b0),并利用它們進(jìn)行計算和化簡過程與方法目標(biāo):由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出·(a0,b0)并運用它進(jìn)行計算;利用逆向思維,得出=·(a0,b0)并運用它進(jìn)行解題和化簡 情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力教學(xué)重難點關(guān)鍵 重點:·(a0,b0),=
24、183;(a0,b0)及它們的運用難點:發(fā)現(xiàn)規(guī)律,導(dǎo)出·(a0,b0)關(guān)鍵:要講清(a<0,b<0)=,如=或=×教法:1、引導(dǎo)發(fā)現(xiàn)法: 通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法: 在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與算術(shù)平方根的乘法進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的乘法法則,形成有效的
25、學(xué)習(xí)策略。2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。媒體設(shè)計:PPT課件,展臺。課時安排:1課時。教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)完成下列各題 1填空 (1)×=_,=_; (2)×=_,=_ (3)×=_,=_ 參考上面的結(jié)果,用“>、<或”填空 ×_,×_,×_ 2利用計算器計算填空 (1)×_,(
26、2)×_, (3)×_,(4)×_, (5)×_ 老師點評(糾正學(xué)生練習(xí)中的錯誤) 二、探索新知 (1)被開方數(shù)都是正數(shù); (2)兩個二次根式的乘除等于一個二次根式,并且把這兩個二次根式中的數(shù)相乘,作為等號另一邊二次根式中的被開方數(shù) 一般地,對二次根式的乘法規(guī)定為: ·(a0,b0) 反過來: =·(a0,b0) 例1計算 (1)× (2)× (3)× (4)× 分析:直接利用·(a0,b0)計算即可 解:(1)×=(2)×=(3)×=9(4)×
27、= 例2 化簡(1) (2) (3)(4) (5) 分析:利用=·(a0,b0)直接化簡即可 解:(1)=×=3×4=12 (2)=×=4×9=36 (3)=×=9×10=90 (4)=×=××=3xy (5)=×=3 三、鞏固練習(xí) (1)計算: × 3×2 ·(2) 化簡: ; ; ; ; 四、應(yīng)用拓展 例3判斷下列各式是否正確,不正確的請予以改正: (1) (2)×=4××=4×=4=8解:(1)不正確 改正:=
28、×=2×3=6 (2)不正確改正:×=×=4 五、歸納小結(jié):本節(jié)課應(yīng)掌握:(1)·=(a0,b0),=·(a0,b0)及其運用 六、布置作業(yè):一、選擇題 1若直角三角形兩條直角邊的邊長分別為cm和cm,那么此直角三角形斜邊長是( ) A3cm B3cm C9cm D27cm 2化簡a的結(jié)果是( ) A B C- D- 3等式成立的條件是( ) Ax1 Bx-1 C-1x1 Dx1或x-1 4下列各等式成立的是( )A4×2=8 B5×4=20 C4×3=7 D5×4=20 二、填空題:1=_ 2
29、自由落體的公式為S=gt2(g為重力加速度,它的值為10m/s2),若物體下落的高度為720m,則下落的時間是_ 三、綜合提高題:1一個底面為30cm×30cm長方體玻璃容器中裝滿水,現(xiàn)將一部分水例入一個底面為正方形、高為10cm鐵桶中,當(dāng)鐵桶裝滿水時,容器中的水面下降了20cm,鐵桶的底面邊長是多少厘米? 2探究過程:觀察下列各式及其驗證過程 (1)2=驗證:2=×=(2)3=驗證:3=×= 同理可得:4 5, 通過上述探究你能猜測出: a=_(a>0),并驗證你的結(jié)論答案:一、1B 2C 3.A 4.D;二、113 212s三、1設(shè):底面正方形鐵桶的底面
30、邊長為x,則x2×10=30×30×20,x2=30×30×2,x=×=30 2 a= 驗證:a=.板書設(shè)計:162 二次根式的乘除(1)情境引入 例2 學(xué)生板演 ·(a0,b0), 例3反之=·(a0,b0)例1 練習(xí) 小結(jié)162 二次根式的乘除(2)教學(xué)內(nèi)容 =(a0,b>0),反過來=(a0,b>0)及利用它們進(jìn)行計算和化簡教學(xué)目標(biāo) 知識與技能目標(biāo):理解=(a0,b>0)和=(a0,b>0)及利用它們進(jìn)行運算過程與方法目標(biāo):利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動,發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用
31、逆向思維寫出逆向等式及利用它們進(jìn)行計算和化簡情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力教學(xué)重難點關(guān)鍵:1重點:理解=(a0,b>0),=(a0,b>0)及利用它們進(jìn)行計算和化簡2難點關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定教法:1、引導(dǎo)發(fā)現(xiàn)法: 通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法: 在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與商的平方根進(jìn)行類比,獲得
32、解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的除法法則,形成有效的學(xué)習(xí)策略。2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。媒體設(shè)計:PPT課件,展臺。課時安排:1課時。教學(xué)過程: 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們完成下列各題: 1寫出二次根式的乘法規(guī)定及逆向等式 2填空 (1)=_,=_;(2)=_,=_;
33、(3)=_,=_;(4)=_,=_規(guī)律:_;_;_;_ 3利用計算器計算填空:(1)=_,(2)=_,(3)=_,(4)=_ 規(guī)律:_;_;_;_。二、探索新知 一般地,對二次根式的除法規(guī)定:=(a0,b>0),反過來,=(a0,b>0) 下面我們利用這個規(guī)定來計算和化簡一些題目 例1計算:(1) (2) (3) (4) 分析:上面4小題利用=(a0,b>0)便可直接得出答案解:(1)=2 (2)=×=2(3)=2(4)=2 例2化簡: (1) (2) (3) (4) 分析:直接利用=(a0,b>0)就可以達(dá)到化簡之目的解:(1)= (2)= (3)= (4)
34、= 三、應(yīng)用拓展 例3已知,且x為偶數(shù),求(1+x)的值分析:式子=,只有a0,b>0時才能成立因此得到9-x0且x-6>0,即6<x9,又因為x為偶數(shù),所以x=8 解:由題意得,即 6<x9 x為偶數(shù) x=8 原式=(1+x) =(1+x) =(1+x)= 當(dāng)x=8時,原式的值=6 四、歸納小結(jié) 本節(jié)課要掌握=(a0,b>0)和=(a0,b>0)及其運用 五、布置作業(yè) 一、選擇題 1計算的結(jié)果是( ) A B C D2閱讀下列運算過程:, 數(shù)學(xué)上將這種把分母的根號去掉的過程稱作“分母有理化”,那么,化簡的結(jié)果是( ) A2 B6 C D 二、填空題 1分母
35、有理化:(1) =_;(2) =_;(3) =_. 2已知x=3,y=4,z=5,那么的最后結(jié)果是_ 三、綜合提高題 1有一種房梁的截面積是一個矩形,且矩形的長與寬之比為:1,現(xiàn)用直徑為3cm的一種圓木做原料加工這種房梁,那么加工后的房染的最大截面積是多少? 2計算 (1)·(-)÷(m>0,n>0) (2)-3÷()× (a>0)答案: 一、1A 2C二、1(1) ;(2) ;(3) 2三、1設(shè):矩形房梁的寬為x(cm),則長為xcm,依題意,得:(x)2+x2=(3)2,4x2=9×15,x=(cm),x·x=x
36、2=(cm2) 2(1)原式-÷=-=-=- (2)原式=-2=-2=-a板書設(shè)計:162 二次根式的乘除(2)情境引入 例2 學(xué)生板演 =(a0,b>0),反過來=(a0,b>0) 例3例1 練習(xí) 小結(jié)16.2 二次根式的乘除(3)教學(xué)內(nèi)容:最簡二次根式的概念及利用最簡二次根式的概念進(jìn)行二次根式的化簡運算教學(xué)目標(biāo) 知識與技能目標(biāo): 理解最簡二次根式的概念,并運用它把不是最簡二次根式的化成最簡二次根式 過程與方法目標(biāo):通過計算或化簡的結(jié)果來提煉出最簡二次根式的概念,并根據(jù)它的特點來檢驗最后結(jié)果是否滿足最簡二次根式的要求 情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確
37、計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力重難點關(guān)鍵 1重點:最簡二次根式的運用2難點關(guān)鍵:會判斷這個二次根式是否是最簡二次根式教法:1、引導(dǎo)發(fā)現(xiàn)法: 通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法: 在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟最簡二次根式的模型,形成有效的學(xué)習(xí)策略。2、閱讀的
38、方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。媒體設(shè)計:PPT課件,展臺。課時安排:1課時。教學(xué)過程: 一、復(fù)習(xí)引入請同學(xué)們完成下列各題1計算(1),(2),(3) =,=,=2現(xiàn)在我們來看本章引言中的問題:如果兩個電視塔的高分別是h1km,h2km,那么它們的傳播半徑的比是_它們的比是 二、探索新知 觀察上面計算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個特點: 1被開方數(shù)不含分母; 2被開方數(shù)
39、中不含能開得盡方的因數(shù)或因式 我們把滿足上述兩個條件的二次根式,叫做最簡二次根式 那么上題中的比是否是最簡二次根式呢?如果不是,把它們化成最簡二次根式 學(xué)生分組討論,推薦34個人到黑板上板書老師點評:不是=. 例1(1) ; (2) ; (3) 例2如圖,在RtABC中,C=90°,AC=2.5cm,BC=6cm,求AB的長解:因為AB2=AC2+BC2 所以AB=6.5(cm) 因此AB的長為6.5cm三、應(yīng)用拓展例3觀察下列各式,通過分母有理數(shù),把不是最簡二次根式的化成最簡二次根式:=-1,=-, 同理可得:=-, 從計算結(jié)果中找出規(guī)律,并利用這一規(guī)律計算 (+)(+1)的值 分
40、析:由題意可知,本題所給的是一組分母有理化的式子,因此,分母有理化后就可以達(dá)到化簡的目的解:原式=(-1+-+-+-)×(+1) =(-1)(+1) =2002-1=2001 四、歸納小結(jié) 本節(jié)課應(yīng)掌握:最簡二次根式的概念及其運用 五、布置作業(yè) 一、選擇題 1如果(y>0)是二次根式,那么,化為最簡二次根式是( ) A(y>0) B(y>0) C(y>0) D以上都不對 2把(a-1)中根號外的(a-1)移入根號內(nèi)得( ) A B C- D- 3在下列各式中,化簡正確的是( )A=3 B=±C=a2 D =x4化簡的結(jié)果是( ) A- B- C- D
41、- 二、填空題 1化簡=_(x0) 2a化簡二次根式號后的結(jié)果是_ 三、綜合提高題 1已知a為實數(shù),化簡:-a,閱讀下面的解答過程,請判斷是否正確?若不正確,請寫出正確的解答過程: 解:-a=a-a·=(a-1)2若x、y為實數(shù),且y=,求的值 答案: 一、1C 2D 3.C 4.C 二、1x 2-三、1不正確,正確解答:因為,所以a<0,原式-a·=·-a·=-a+=(1-a) 2 x-4=0,x=±2,但x+20,x=2,y= .板書設(shè)計:§16.2.二次根式的乘除(3)情境引入 例2 學(xué)生板演 最簡二次根式的定義 例3例1
42、 練習(xí) 小結(jié)教學(xué)反思:16.3 二次根式的加減(1) 教學(xué)內(nèi)容 二次根式的加減 教學(xué)目標(biāo) 知識與技能目標(biāo): 理解和掌握二次根式加減的方法 過程與方法目標(biāo):先提出問題,分析問題,在分析問題中,滲透對二次根式進(jìn)行加減的方法的理解再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡 情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力 重難點關(guān)鍵 1重點:二次根式化簡為最簡根式2難點關(guān)鍵:會判定是否是最簡二次根式教法:1、引導(dǎo)發(fā)現(xiàn)法: 通過教師精心設(shè)計的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識上
43、升為理性認(rèn)識,充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對實現(xiàn)教學(xué)目標(biāo)起了重要的作用;2、講練結(jié)合法: 在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。學(xué)法:1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補短,體驗學(xué)習(xí)活動中的交流與合作。4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。媒體設(shè)計:PPT課件,展臺。課時安排:1課
44、時。教學(xué)過程:一、復(fù)習(xí)引入 學(xué)生活動:計算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教師點評:上面題目的結(jié)果,實際上是我們以前所學(xué)的同類項合并同類項合并就是字母不變,系數(shù)相加減 二、探索新知 學(xué)生活動:計算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老師點評: (1)如果我們把當(dāng)成x,不就轉(zhuǎn)化為上面的問題嗎? 2+3=(2+3)=5 (2)把當(dāng)成y; 2-3+5=(2-3+5)=4=8 (3)把當(dāng)成z; +2+ =2+2+3=(1+2+3)=6 (4)看為x,看為y 3-2+=(3-2)+ =+
45、 因此,二次根式的被開方數(shù)相同是可以合并的,如2與表面上看是不相同的,但它們可以合并嗎?可以的 3+=3+2=5 3+=3+3=6 所以,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并 例1計算:(1)+ (2)+ 分析:第一步,將不是最簡二次根式的項化為最簡二次根式;第二步,將相同的最簡二次根式進(jìn)行合并 解:(1)+=2+3=(2+3)=5:(2)+=4+8=(4+8)=12 例2計算:(1)3-9+3; (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+三、應(yīng)用拓展:例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值 分析:本題首先將已知等式進(jìn)行變形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3其次,根據(jù)二次根式的加減運算,先把各項化成最簡二次根式,再合并同類二次根式,最后代入求值 解:4x2+y2-4x-6y+10=0 4x2-4x+1+y2-6y+9=0 (2x-1)2+(y-3)2=0 x=,y=3 原式=+y2-x2+5x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省撫順市2024-2025學(xué)年人教版八年級上冊數(shù)學(xué)期中模擬試題(含答案)
- 2024年度云南省高校教師資格證之高等教育心理學(xué)模擬試題(含答案)
- 2024年度上海市高校教師資格證之高等教育法規(guī)題庫附答案(典型題)
- 光伏發(fā)電+儲能項目三期項目建筑安裝工程投標(biāo)方案(技術(shù)方案)
- 阜陽師范大學(xué)《小型建筑設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《快題設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)協(xié)和學(xué)院《物流運籌學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《中國民族民間音樂》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年二級建造師機電-思維導(dǎo)圖
- 福建師范大學(xué)《工程基礎(chǔ)二》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年內(nèi)蒙古呼和浩特市中考英語試卷真題(含答案解析)
- 全等三角形的判定 邊邊邊說課稿2024-2025學(xué)年人教版數(shù)學(xué)八年級上冊
- 2024-2030年中國酒類電子商務(wù)行業(yè)盈利模式分析與發(fā)展?jié)摿υu估研究報告
- 近三年投標(biāo)沒有發(fā)生過重大質(zhì)量安全事故的書面聲明范文
- 2024時事政治考試題庫(100題)
- 2024-2030年中國心血管外科設(shè)備和技術(shù)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 2024年甘肅慶陽市林業(yè)和草原局招聘專職聘用制護(hù)林員57人歷年(高頻重點復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 2024年宜賓市中考英語試題(附答案)
- DL∕T 5776-2018 水平定向鉆敷設(shè)電力管線技術(shù)規(guī)定
- 國際飛機租賃合同范本
- 人教版八年級歷史上冊 第一、二單元 單元測試卷( 2024年秋)
評論
0/150
提交評論