2021-2022學年第二學期福州市高二期中質(zhì)量抽測--參考答案_第1頁
2021-2022學年第二學期福州市高二期中質(zhì)量抽測--參考答案_第2頁
2021-2022學年第二學期福州市高二期中質(zhì)量抽測--參考答案_第3頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022 學年第二學期福州市高二期中質(zhì)量抽測數(shù)學參考答案及評分細則評分說明:1本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制定相應的評分細則。2對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應給分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分。3解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù)。4只給整數(shù)分數(shù)。一、單項選擇題:本題共 8 小題,每小題 5 分,共 40 分1B 2A 3C 4A5D 6B 7D 8B二、多項

2、選擇題:本題共 4 小題,每小題 5 分,共 20 分9BD 10CD 11ABD 12ACD三、填空題:本大題共 4 小題,每小題 5 分,共 20 分131 14 -11 15 0.1359 167 + 32a+b-2 b -1【第 8 題解析】選項 A:令 a = 0,b = 2 ,得 e + = 0成立,故 A 正確;a -1a+b-2 b -1 b -1選項 B:由 e 0 < 0 ,得 (b -1)(a -1) < 0 ,若b -1> 0 且 a -1< 0 ,+ = 得a -1 a -1得 a <1< b,則 a -3b <1-3

3、0;1= -2 ;若b -1< 0且 a -1> 0,得b <1< a ,則a -3b >1-3´1= -2 ,從而 a -3b = -2不可能成立. B 錯誤;a+b-2 b -1由 e 0+ =a -1得(a -1)ea-1 = (1-b)e1-b ,令1f (x) = xex ,則 a -1與1-b 可以是方程 f (x) = k( k Î(- , 0) )e的兩個根. f ¢(x) = (x +1)ex ,由 f ¢(x) > 0 ,得 x > -1, f (x) 在(-1,+¥) 內(nèi)單調(diào)遞增,

4、由 f ¢(x) < 0 ,得 x < -1,f (x) 在(-¥,-1)內(nèi)單調(diào)遞減,得1f x f - = - .注意到 lim ( ) 0( ) ( 1) f x = ,故ex®-¥可繪制出 f (x) = xex 的大致圖象.根據(jù)圖象,存在 a -1® -¥ 且1-b ® 0 的情形,此時數(shù)學參考答案 (第 1頁 共 10頁)a ® -¥ ,b ®1,得 a + b < 2, a -b < -2 成立,故 C,D 選項正確.綜上所述,選擇 B.【第 12 題解析】將

5、表中的數(shù)字寫成冪的形式,可發(fā)現(xiàn)其指數(shù)恰好構成“楊輝三角”. C1 = 7 ,故 第 8 行第 2 個數(shù)為 27 =128,A選項 A:該數(shù)表中第 8 行第 2 個數(shù)的指數(shù)為7正確;10 10 å å 1 45 ,B 錯誤;選項 B:根據(jù)數(shù)表a = 2i- ¹ 2i,2i=2 i=2選項 C:該數(shù)表中第 9 行的奇數(shù)項的指數(shù)之和為C +C +C +C +C = 2 ;偶數(shù)項0 2 4 6 8 7 8 8 8 8 8的指數(shù)之和為 C +C +C +C = 2 ,故第 9 行的奇數(shù)項之積等于偶數(shù)項之積,C 正確;1 3 5 7 7 8 8 8 8選 項 D : 假 設

6、存 在 , 由log a : log a + : log a + = 3:4:5 得2 63, j 2 63, j 1 2 63, j 2C 3j-162=C 4j62,C 4j62 =j+ ,即1C 5624´62! 3´62!=( j -1)!(63- j)! j!(62- j)!且5´62! 4´62!=j!(62- j)! ( j +1)!(61- j)!,化 簡得4 3 =63- j j且5 4 =62- j j +1,得 j = 27 ,故 D 正確.綜上所述,選 ACD.【第 16 題解析】不妨設 P 點在第二象限, C 的左、右焦點分別為

7、 F1,F2 .如圖,由于| AB |= 2 | PQ |= 4c ,由對稱性可得| DQ |= c ,過點 Q 作 x 軸的垂線,可得垂足為 C 的右焦點F .在直角三角形2QF O 中2|QF |= | OQ | -| OF | = 4c -c = 3c ,則在直角三角 2 2 2 22 2形QF F 中2 1| QF |= | QF | + | F F | = 3c + 4c = 7c .2 2 2 21 2 1 2根 據(jù) 雙 曲 線 的 定 義 可 知| QF | -| QF |= 2a , 即1 27c - 3c = 2a ,則離心率 ec 2 7 + 3= = =a 7 - 3 2

8、.數(shù)學參考答案 (第 2頁 共 10頁)四、解答題:本大題共 6 小題,共 70 分17. 【考查意圖】本小題考查利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值等基礎知識;考查抽象概括能力、運算求解能力;考查化歸與轉化思想、數(shù)形結合思想;考查數(shù)學建模、數(shù)學抽象、直觀想象、數(shù)學運算等核心素養(yǎng);體現(xiàn)基礎性.【解析】(1) ( ) ( )f ¢ x = 3 x2 - 2x - 3 ,··················&#

9、183;········································· 1 分由 f ¢(x) > 0得 x < -1或 x > 3, 由 f

10、 ¢(x)< 0得 -1< x < 3,························4 分所以 f (x)的單調(diào)遞增區(qū)間為(-¥,-1)和(3,+¥),f (x)的單調(diào)遞增區(qū)間為(-1, 3).·········

11、83;·················································

12、83;··· 6 分(2)令 f ¢(x) = 0得 x = -1或 x = 3,········································

13、;··············· 7 分由(1)可列下表x -2,-1) -1 (-1, 3) 3 (3, 4f ¢ x + 0 - 0 +( )f x 單調(diào)遞增 取極大值 單調(diào)遞減 取極小值 單調(diào)遞增( )注:上述表格沒有列出,不扣分.由于 f (-2)= -1, f (-1)= 6, f (3) = -26 , f (4) = -19 ,········

14、·············· 9 分得 f (x)在區(qū)間-2, 4上的最大值為 6 ,最小值為 -26.·····························

15、3;· 10 分18. 【考查意圖】本小題考查主要考查數(shù)列的通項與前 n項和的關系式、等差數(shù)列的通項公式、裂項相消法求和等基礎知識;考查運算求解能力;考查化歸與轉化思想、分類與整合思想;考查數(shù)學建模、數(shù)學抽象、數(shù)學運算等核心素養(yǎng);體現(xiàn)基礎性.【解析】(1)當 n =1時,由 1 14S -1= a2 + 2a 得 24a -1= a + 2a , a = .···· 1 分 n n n 1 1 1當 n 2時,由 4S -1= a2 + 2a 得 2 4S 1 a 2a- - = - + - , n n n n 1 n 1 n 1兩式相減可得

16、4a = a + 2a - a - 2a ,2 2n n n n-1 n-1化簡得( 1 )( 1 2) 0a + a a - a - = ,······································&

17、#183;················ 4 分n n- n n-a + a 1 > 0 ,故由條件得n n-a a= 1 + 2 ,·························

18、;························· 5 分n n-數(shù)學參考答案 (第 3頁 共 10頁)得數(shù)列a 是以1為首項, 2 為公差的等差數(shù)列,················&#

19、183;······················· 6 分n從而數(shù)列 a 的通項公式為 a = 2n -1.·····················

20、83;······························· 7 分n n(2)由(1)得 a = 2n -1,n所以1 1 1 æ 1 1 ö= = ç - ÷a a n n n n(2 -1)(2 +1) 2 è 2 -1 2

21、+1 øn n+1,································· 9 分得1 1 1 1 æ 1 ö 1 æ1 1 ö 1 æ 1 1 ö+ + + = ç1- 

22、47;+ ç - ÷+ + ç - ÷L La a a a a a 2 3 2 3 5 2 2n -1 2n +1è ø è ø è ø 1 2 2 3 n n+11 æ 1 1 1 1 1 ö= ç1- + - +L+ - ÷2 3 3 5 2n -1 2n +1è ø1 æ 1 ö= ç - ÷12 2n +1è ø=n2n +1.···

23、83;················································ 12 分19.

24、【考查意圖】本小題主要考查空間直線與直線、直線與平面的位置關系,平面與平面的夾角等基礎知識;考查推理論證能力、運算求解能力與空間想象能力;考查數(shù)形結合思想;考查直觀想象、邏輯推理、數(shù)學運算等核心素養(yǎng),體現(xiàn)基礎性、綜合性【解析】(1)因為平面 AED 平面 BCDE ,平面 AED I 平面 BCDE = DE ,BE DE , BE Ì 平面 BCDE ,所以 BE 平面 AED ,·················

25、············· 2 分因為 AE Ì 平面 AED ,所以 AE BE ,·······························&

26、#183;·····················3 分因為 AE BD , BD I BE = B , BD, BE Ì 平面 BCDE ,所以 AE 平面 BCDE .·················&

27、#183;·················································&

28、#183;········································ 4 分(2)因為 AE 平面 BCDE , BE DE ,所以 BE,DE, AE 兩兩互相垂直,以 E 點

29、為原點, EB, ED, EA所在直線為 x 軸、 y 軸、 z 軸,建立空間直角坐標系.·········5 分得各點坐標分別為: A(0,0, 2)、 B(2, 0, 0) 、C(2,1, 0) 、 D(0, 2, 0) ,··············· 6 分得 BA = (-2, 0, 2) , BC = (0,1, 0), BD = (-2, 2,

30、 0) .·····································7 分數(shù)學參考答案 (第 4頁 共 10頁)設 平 面 CAB 的 一 個 法 向 量 為u = (x , y , z ) , 由 BA×

31、;n = 0 , BC ×n = 0 , 得1 1 1ì-2x + 2z = 0,1 1íy = 0,î1令 x1 =1得 y1 = 0 ,z = ,從而u = (1, 0,1) .··························8 分1 1設 平 面 ABD 的 一 個 法 向 量 為v =

32、(x , y , z ) , 由 BA×v = 0 , BD×v = 0 , 得2 2 2ì-2x + 2z = 0,2 2í-2x + 2y = 0,î2 2令 x2 =1得y = ,2 1z = ,從而 v = (1, 1, 1) .························· 9 分2

33、1r rcos u,vu ×v 2 2 6= r r = = = ,···········································

34、83;··· 11 分u × v 2 ´ 3 33所以平面CAB 與平面 DAB 夾角的余弦值為63.·····································&#

35、183;···· 12 分20.【考查意圖】本小題主要考查離散型隨機變量的分布列、期望、推斷與決策等基礎知識;考查推理論證能力、運算求解能力與創(chuàng)新意識;考查化歸與轉化思想;考查數(shù)學建模、邏輯推理、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)綜合性、應用性與創(chuàng)新性【解析】:(1) X 的可能取值為 0,1, 2,3, 4.1 1 1 1 1高二 1 班答對某道題的概率 = ´ + ´ = ,··············

36、·························· 2 分2 2 2 6 3則k 4-kæ 1 öæ1ö æ 2 öX : B 4, , ( ) ( )kP X k C k 0,1, 2,3, 4= = ç ÷ ç ÷ =ç &

37、#247;è ø 3 334è ø è ø.···················3 分則 X 得分布列為X 0 1 2 3 4P16813281827881181···············

38、83;·················································

39、83;·········································5 分數(shù)學參考答案 (第 5頁 共 10頁)1 4E X = 4´ = .·

40、83;·················································

41、83;··························6 分 則 ( )3 31 1 1 1 1(2)高二 1 班答對某道題的概率為 = ´ + p = + p ,·············

42、83;········· 8 分2 2 2 4 2æ 1 1 ö 3 p答錯某道題的概率為 -ç + p÷ = -1è ø4 2 4 2.··························

43、····················· 9 分4æ 3 p ö 80則1-ç - ÷ ,解得è ø4 2 8156 ,·················&#

44、183;································ 11 分p <1所以 p 的最小值為56.·············&

45、#183;·················································&

46、#183;·············12 分21.【考查意圖】本小題主要考查導數(shù)的幾何意義、導數(shù)的應用等基礎知識;考查抽象概括能力、推理論證能力、運算求解能力與創(chuàng)新意識,考查函數(shù)與方程思想、化歸與轉化思想、分類與整合思想、數(shù)形結合思想;考查數(shù)學抽象、直觀想象、邏輯推理、數(shù)學運算等核心素養(yǎng),體現(xiàn)綜合性、應用性與創(chuàng)新性【解析一】(1) f ¢(x) = ln x +1, f ¢(1) =1,·····

47、······································· 2 分又 f (1) = 0,········&#

48、183;·················································&#

49、183;·····························3 分故 f (x)的圖象在點(1,0)處的切線方程為 y = x -1.··············&

50、#183;·······················4 分(2)當 x1,令 ( ) ( )2g x = x ln x -a x -1 ,得 g (1) = 0, g¢(x) = ln x +1- 2ax ,············&#

51、183;·········································· 5 分 1 1-2ax令 h(x) = ln x +1- 2ax ,則 ¢(

52、 ) = - = .·································· 6 分 x xh x 2a若 a 0時,得 h¢(x) > 0,則 g¢(x)在1,+¥)上單調(diào)遞增,故 g¢(x) g&#

53、162;(1) =1- 2a 0 ,所以 g (x)在1,+¥)上單調(diào)遞增,所以 g (x) g (1) = 0 ,從而 ( )x x -a x - ,不符合題意;···································

54、83;·············· 7 分ln 1 02若 a > 0 ,令 h¢(x) = 0,得x 1= . 2a()若 01< a < ,則212a>1,當æ 1 öxÎç ÷1,è ø2aæ 1 ö時, h¢(x) > 0, g¢(x)在 1, 上上ç ÷è ø

55、2a數(shù)學參考答案 (第 6頁 共 10頁)é 1 ö單調(diào)遞增,從而 g¢(x) > g¢(1)=1- 2a > 0 ,所以 g (x)在1,在單調(diào)遞增,此時 ÷êë ø2ag (x) g (1) = 0 ,不符合題意;························&

56、#183;····································· 9 分1 1 a ,則 < ,h¢(x) 0 在1,+¥)上恒成立,所以 g¢(x)在1,+¥)(

57、)若 0 12 2a上單調(diào)遞減, g¢(x) g¢(1) =1- 2a 0 ,從而 g (x)在1,+¥)上單調(diào)遞減,所以g x g = ,所以 x x -a(x2 - ) 恒成立.································&#

58、183;·11 分( ) (1) 0ln 1 0綜上所述, a 的取值范圍是é1 ö,+¥÷êë ø2.··································

59、3;···················· 12 分【解析二】(1)同解析一.··························

60、3;··············································4 分(2)由 ( )f x ax -a 得

61、 xln x ax2 -a ,即 ln2ax ax - .······················· 5 分x a 2g x ax x g¢ x = a + - = .········6 分 x x x xa 1 ax - x +a令 ( ) = - - ln ,得 g (1

62、) = 0, ( )2 2當 a 0時,由 x1得 xln x0 , ax2 -a = a(x2 -1) 0 ,此時 f (x) ax -a2不恒成立;·····································&#

63、183;·················································&#

64、183;····8 分當 a > 0 時,方程 ax2 - x + a = 0 的判別式 D =1- 4a2 .1()若1- 4a2 0 ,即 a ,可得 ax2 - x + a 0,g¢(x) 0 ,得 g (x)在1,+¥)2a上單調(diào)遞增,從而 g (x) g (1) = 0 , - ln 成立. ···················&

65、#183;·········9 分ax xx 1()若1- 4a2 > 0 ,即 0 h x = ax - x + a( xÎR ),由 于 h(0) = a > 0 ,< < ,令 ( ) 2a2æ 1 öh(1) = 2a -1< 0 ,h a= >ç ÷è øa0æ 1 ö,由零點存在定理得 h(x)在1,ç ÷è øa內(nèi)存在唯一零點a

66、 ,則當 xÎ1,a ), h(x)< 0,即 g¢(x)< 0,此時可得 g (x) g (1) = 0 ,與題設0 0條件不符,舍去. ···································

67、3;··············································11 分綜上所述, a 的取值范圍是

68、3;1 ö,+¥÷êë ø2.··········································

69、83;············ 12 分數(shù)學參考答案 (第 7頁 共 10頁)22.【考查意圖】本小題主要考查橢圓的圖象和性質(zhì)、直線和橢圓的位置關系等基礎知識;考查推理論證能力、運算求解能力;考查函數(shù)與方程思想、數(shù)形結合思想、化歸與轉化思想;考查直觀想象、邏輯推理、數(shù)學運算等核心素養(yǎng),體現(xiàn)基礎性、綜合性與創(chuàng)新性x y2 2【解析一】(1)由條件得 F 坐標為(-2, 0) ,設 P 點坐標為 (x , y ) ,得 0 + 0 =1,0 016 12x2y = - .

70、3;·················································

71、3;··································1 分0 12(1 )2 016x 12PF = (x + 2) + y = (x + 2) +12(1- ) = x + 4x +162 2 2 0 20 0 0 0 016 41 1=

72、 ( x + 4) = x + 4 ,···············································

73、;··········· 3 分20 02 21 1因為 4 x 4 2 x + 4 6 | | 4 2- ,所以 ,得 PF = x + .·················4 分0 0 02 2說明:此處如果直接套用二級結論,沒有詳細過程,僅給 1 分.(2)設E(x , y ) ,G(x , y ) .1 1 2

74、 2 當 直 線 EG 的 斜 率 不 存 在 時 , 點 E,G 關 于 x 軸 對 稱 ,k k 互 為 相 反 數(shù) ,1, 2k1 + k2 = 0 ¹ 1,與條件矛盾. ··································&#

75、183;·······························5 分當直線 EG 的斜率存在時,設直線 EG 方程為 y = kx +t ,將其與橢圓方程聯(lián)立,得ì x y2 2ï + =1,í16 12ï = +y kx t,î消

76、去 y 得 (4k2 +3)x2 +8ktx + 4t2 -48 = 0 ,則8ktx + x = - ,1 2 24k +34t - 482x x =1 2 24k +3.···································

77、83;················································6 分由y y k

78、x +t kx +tk + k = 得 1 + 2 = 1 + 2 =1 2 1x + 4 x + 4 x + 4 x + 41 2 1 21, 去 分 母 整 理 得(2k -1)x x + (4k +t - 4)(x + x ) +8t -16 = 0 ,····························&#

79、183;············7 分1 2 1 2從 而4t - 48 8kt2(2k -1) + (4k +t - 4)(- )+8t- 16=4k + 3 4k + 32 20, 去 分 母 整 理 得數(shù)學參考答案 (第 8頁 共 10頁)t2 - (8k + 6)t + 4k(4k + 6) = 0 ,即 (t - 4k)t -(4k + 6)= 0 ,得t = 4k 或t = 4k + 6 .······&

80、#183;·················································&

81、#183;·················································&

82、#183;9 分若 t = 4k ,則直線 EG 方程為 y = kx + 4k ,即 y = k(x + 4) ,可知直線 EG 恒過定點(-4, 0) ,與題設條件不符,舍去.···································

83、························· 10 分若t = 4k + 6 ,則直線 EG 方程為 y = kx + 4k + 6,即 y = k(x + 4)+ 6 ,可知直線 EG恒過定點 (-4, 6) .···········

84、;··················································

85、;·····················11 分綜上,可得直線 EG 恒過定點,定點坐標為 (-4, 6) .·······················

86、·············12 分【解析二】(1)由條件得 F 坐標為 (-2, 0) ,設 P 點坐標為 (4 cosq,2 3 sinq)(q 為參數(shù)),··························

87、··················································

88、···················· 1 分PF = (4 cosq + 2) + (2 3 sinq) = 16 cos q +16 cosq + 4+12sin q2 2 2 2= 4 cos q +16 cosq +16 = 2 (cosq + 2) = 2 | cosq + 2 | ,········

89、83;····· 3 分2 2因為| cosq + 2 |= cosq + 21,所以| PF | 2 .·····································

90、······ 4 分說明:此處如果直接套用二級結論,沒有詳細過程,僅給 1 分.(2)設E(x , y ) ,G(x , y ) .1 1 2 2當直線 EG 的斜率為0 在時,點 E,G 關于 y 軸對稱,得x = -x y = y ,2 1, 2 1y y 8y 8yk + k = + = = =1 1 1 11 2 2x + 4 -x + 4 (4- x )(4+ x ) 16- x1 1 1 1 1x y2 21,又1 + 1 =1,則16 12y x - x y1 1 16 1 8 12 2 2=1- = = ,解得12 1

91、6 16 16y1 = 6 ,得此時直線 EG 方程為 y = 6. ····· 5 分當直線 EG 的不為 0 時,設直線 EG 方程為 x = my +t ,將其與橢圓方程聯(lián)立,得ì x y2 2ï + =1,消去 x 得 (3m + 4)y +6mty +3t -48 = 0 ,則2 2 2í16 12ï = +x my t,î6mty + y = -1 2 23m + 4,3t - 482y y = .·······&#

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論