圖像描述與分析_第1頁
圖像描述與分析_第2頁
圖像描述與分析_第3頁
圖像描述與分析_第4頁
圖像描述與分析_第5頁
已閱讀5頁,還剩58頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第7章 圖像描述與分析7.1 灰度描述7.2 邊界描述7.3 區(qū)域描述7.4 紋理描述7.5 形態(tài)分析第7章 圖像描述與分析T 圖像分析 也叫景物分析或圖像理解 是一種描述過程,研究用自動或半自動裝置和系統(tǒng),從圖像中提取有用數(shù)據(jù)或信息生成非圖的描述或表示 圖像分析:特征提取、圖像分割、符號描述、紋理分析、運動圖 像分析和圖像的檢測與配準預處理分割特征提取分類描述符號表達識別跟蹤解釋描述輸入圖像T圖像分析通常按下列順序進行 從圖像中提取對象或?qū)ο蠼M成部分的圖像特征(例如圖像中景物的邊緣或區(qū)域) 利用圖像特征的屬性或相互關(guān)系來決定每個屬性應屬于哪個對象的哪個部分第7章 圖像描述與分析7.1 灰度描

2、述7.1.1 幅度特征7.1.2 直方圖特征7.1.3 變換系數(shù)特征2001( , )( , )NNijf x yf i jN7.1.1 幅度特征最基本的是圖像的幅度特征。例如在區(qū)域內(nèi)的平均幅度,即7.1.1 幅度特征 a)原圖 b)利用幅度特征將目標分割出來P(rk)=nk/N 第rk個灰度級出現(xiàn)的頻數(shù) 可從直方圖的分布得到:圖像對比度、動態(tài)范圍、明暗程度等 一階直方圖的特征參數(shù): rk量化層 均值: 方差: 歪斜度:10()kLkkrur p r一階矩1220()( )kLkkrru p r二階中心矩133301()( )kLkkruru p r三階中心矩7.1.2 直方圖特征 峭度:12

3、2()kLkrmp r120()log ()LkkbHp rp r 熵: 能量:7.1.2 直方圖特征144401()( )3kLkkruruP rv v(m+1)u v(m)水平切口垂直切口環(huán)狀切口扇狀切口(1)1()()( , )dv mv mS mM u vv(1)2()()( , )du mu mSmM u vu(1)3()()(,)dmmSmM (1)4()()( , )dmmSmM 7.1.3 變換系數(shù)特征T 頻域中的一些特征 如2 ()222( , )( , )d d( , )( , )jux vyF u vf x y ex yM(u,v) F(u,v)R u vI u v 設:

4、=幅譜M與F不是唯一地對應(M有位移不變性)7.1.3 變換系數(shù)特征T 特征:圖像中含有這些切口的頻譜成分的含量。信息可作為模式識別或分類系統(tǒng)的輸入信息。已成功用于土地情況分類,放射照片病情診斷等 Ff(x,y) F-1F(u,v)g(u,v)( , )U u v( , )u m n7.1.3 變換系數(shù)特征7.2.1 鏈碼描述7.2.2 傅里葉描述子7.2 邊界描述7.2.1 鏈碼描述T 在數(shù)字圖像中,邊界或曲線是由一系列離散的像素點組成的,其最簡單的表示方法是由美國學者Freeman提出的鏈碼方法。T 鏈碼實質(zhì)上是一串指向符的序列,有4向鏈碼、8向鏈碼等。 )90( 1 )180(2 )0(

5、0 )270( 3 )90(2 )135(3 )45( 1 )180(4 )0(0 )225(5 )315(7 )270(6 4向鏈碼 8向鏈碼7.2.1 鏈碼描述 a)原鏈碼方向 b)逆時針旋轉(zhuǎn)9090 圖a曲線的鏈碼為:01122233100000765556706其差分鏈碼為:101001067000077700111690 圖b曲線的鏈碼為:23344455322222107770120 其差分鏈碼為:10100106700007770011167.2.1 鏈碼描述 曲線的鏈碼是:6022222021013444444454577012其差分鏈碼是: 22000062771210000

6、00171201117.2.1 鏈碼描述曲線的鏈碼是:024444424323566666676711234其差分鏈碼是: 22000062771210000017120111 7.2.1 鏈碼描述T鏈碼的特殊性質(zhì) 一個物體很容易實現(xiàn)旋轉(zhuǎn)45。如果一個物體旋轉(zhuǎn)n45,可由原鏈碼加上 n 倍的模8得到鏈碼的微分,也稱差分碼,由原碼的一階差分求得鏈碼差分是關(guān)于旋轉(zhuǎn)不變的邊界描述方法區(qū)域的一些其它性質(zhì),如面積和角點,可以由鏈碼直接得7.2.1 鏈碼描述7.2.2 傅里葉描述子T對邊界的離散傅里葉變換表達,可以作為定量描述邊界形狀的基礎(chǔ)。采用傅里葉描述的一個優(yōu)點是將二維的問題簡化為一維問題。 邊界點的

7、兩種表示方法7.3 區(qū)域描述7.3.1 幾何特征7.3.2 不變矩1. 像素與鄰域a) 4-鄰域 b) 8-鄰域 7.3.1 幾何特征2. 區(qū)域面積1100( , )mnxyAf x y 3. 位置1111000011( , ),( , )mnmnxyxyXxf x yYyf x ymnmn質(zhì)心形心1111000011,nmnmijijijxxyymnmn 7.3.1 幾何特征4.區(qū)域周長 三種定義: (1) 區(qū)域和背景交界線(接縫)的長度 (2) 區(qū)域邊界8鏈碼的長度 (3) 邊界點數(shù)之和 7.3.1 幾何特征5. 方向二階矩軸:物體上的全部點到該線的距離平方和最小其中 是物體點到直線 的距

8、離112200( , )mnxyxyrf x yxyr( , )x y 7.3.1 幾何特征6. 距離 1) 歐幾里德距離(Euclidean)22( ,)()()edP Qxuyv2) 4-鄰域距離(City-block城區(qū)距離)4( ,)dP Qxuyv3) 8-鄰域距離(Chessboard棋盤距離)8( ,)max(,)d P Qxuyv 7.3.1 幾何特征 7.圓形度 描述連通域與圓形相似程度的量。根據(jù)圓周長與圓面積的計算公式,定義圓形度的計算公式如下: 其中, 為連通域S的面積; 為連通域S的周長。圓形度 值越大,表明目標與圓形的相似度越高sA24scsALsLc 7.3.1 幾

9、何特征8. 矩形度 描述連通域與矩形相似程度的量 其中, 為連通域S的面積; 是包含該連通域的最小矩形的面積。對于矩形目標,矩形度 取最大值1,對細長而彎曲的目標,則矩形度的值變得很小sRRAAsARAR 7.3.1 幾何特征9. 長寬比 其中, 是包圍連通域的最小矩形的寬度; 是包圍連通域的最小矩形的長度。RWRLRWLRWL 7.3.1 幾何特征7.3.2 不變矩1.矩的定義 對于二維連續(xù)函數(shù) , 階矩定義為:( , )f x y()jk( , )d d,0,1,2jkjkmx y f x yx yj k 中心矩定義為:() ()( , )d djkjkxxyyf x yx y 數(shù)字圖像,

10、則上式變?yōu)椋?) ()( , )jkjkxyxxyyf x y 2.不變矩 定義歸一化的中心矩為: 利用歸一化的中心矩,可以獲得對平移、縮放、鏡像和旋轉(zhuǎn)都不敏感的7個不變矩,定義如下:00,1()2jkjkjk12002222200211()422330122103(3)(3)7.3.2 不變矩22430122103()()2253012301230122103222103210330122103(3)() ()3()(3)() 3()()2262002301221031130122103() ()()4()()2272103301230122103221230210330122103(3)(

11、) ()3()(3)() 3()()7.3.2 不變矩7.4 紋理描述7.4.1 矩分析法 7.4.2 灰度差分統(tǒng)計法7.4.3 灰度共生矩陣法 7.4.4 紋理的結(jié)構(gòu)分析T紋理特征自然紋理:種子、草地(無規(guī)則性)人工紋理:織物、磚墻(有規(guī)則性,它的灰度分布具有周期性,即使灰度變化是隨機的,它也具有一定的統(tǒng)計特性)T標志三要素1)某種局部的序列性在該序列更大的區(qū)域內(nèi)不斷重復2)序列基本元素是非隨機排列組成的3)區(qū)域內(nèi)任何地方都有大致相同的結(jié)構(gòu)尺寸7.4 紋理描述a) 結(jié)構(gòu)型紋理 b) 隨機型紋理7.4 紋理描述T描述紋理圖像特征的參數(shù)有許多種,如 1)知道像素及鄰近像素的灰度分布情況。 2)檢

12、查小區(qū)域內(nèi)灰度直方圖,檢查各小區(qū)域直方圖的相似性,具有相似直方圖的小區(qū)域同屬一個大區(qū)域7.4 紋理描述T 紋理:灰度與顏色的二維變化的圖案,是區(qū)域的重要特征之一,灰度分布具有周期性、方向性、疏密之分。T 統(tǒng)計方法:用于木紋、紗地、草地等不規(guī)則物體 自然紋理:具有重復性排列現(xiàn)象的自然景象,無規(guī)則T 結(jié)構(gòu)方法:布料的印刷圖案或磚花地等組成紋理的元素及其排列規(guī)則來描述紋理的結(jié)構(gòu) 人工紋理:是由自然背景上的符號排列組成、有規(guī)則的7.4 紋理描述7.4 紋理描述7.4 紋理描述(1) 均值(Mean)(2) 方差(Variance)(3) 扭曲度(Skewness)10()Niiik fk1220()(

13、 )Niiikf k133301()( )Niiikf k7.4.1 矩分析法 (5) 熵(Entropy)120( )log( )NiiiHf kf k 7.4.1 矩分析法 14401()( )34Niiikf k(4) 峰度(Kurtosis)T 灰度差分統(tǒng)計法又稱一階統(tǒng)計法,通過計算圖像中一對像素間灰度差分直方圖來反映圖像的紋理特征。 令 為兩個像素間的位移矢量, 是位移量為 的灰度差分:T 粗紋理時,位移相差為 的兩像素通常有相近的灰度等級,因此, 值較小,灰度差分直方圖值集中在 附近;T 細紋理時,位移相差為 的兩像素的灰度有較大變化 , 值一般較大,灰度差分直方圖值會趨于發(fā)散 (

14、,)xy ( , )fx y( , )( , )(,)fx yf x yf xx yy( , )fx y0i ( , )fx y7.4.2 灰度差分統(tǒng)計法T 灰度直方圖中,各像素的灰度是獨立進行處理的,故不能很好地給紋理賦予特征。因此,如果研究圖像中兩像素組合中灰度配置的情況,就能夠很好地給紋理賦予特征,這樣的特征叫二階統(tǒng)計量, (灰度直方圖是一階統(tǒng)計量) 代表性的是以灰度共生矩陣為基礎(chǔ)的紋理特征計算法。7.4.3 灰度共生矩陣法 T灰度級聯(lián)合分布(二階統(tǒng)計量)7.4.3 灰度共生矩陣法 (, ),( , ),(,), ,0,1,:11,2 -1 (2 -1)(, )( , )| ( , ),

15、(,)(,),0-1L LP i jx y f x yif x Dx y Dyj x yNDx DyNNNNP i jx yf x yif x Dx y Dyjf x Dx y Dyji jL 集合( )且的元素個數(shù)共有 ()個共生矩陣簡化:集合且或且 的元素個數(shù)x,y坐標,f(x,y)灰度,L灰度級數(shù)x列,y行0000,000,90,4,135,45Dxd DyDxDydDx DyDxd DydDxd Dyd 東西南北限制為 種:東北西南西北東南7.4.3 灰度共生矩陣法 T例:012301123012A1230122301233012300123017.4.3 灰度共生矩陣法 4*4(0,

16、0)(0,1)(0,2)(0,3)0807(1,0)(1,1)(1,2)(1,3)8080(1,0)(2,0)(2,1)(2,2)(2,3)0807(3,0)(3,1)(3,2)(3,3)7070AppppppppP DxDypppppppp1200001400(1,1)0012000012AP DxDy 設圖像矩陣為08078080(1,0)08077070AP244004800(1,0)00220020BP水平方向無重復,變化較快水平方向數(shù)值大,重復多,紋理較粗1)對角線元素全為0,表明同行灰度變化快2)對角線元素較大,表明紋理較粗7.4.3 灰度共生矩陣法 7.4.4 紋理的結(jié)構(gòu)分析紋理

17、結(jié)構(gòu)的描述及排列a) 紋理基元b)由規(guī)則 生成的紋理模式c) 由 和其它規(guī)則生成的二維紋理模式SaSSaS紋理結(jié)構(gòu)分析圖例7.4.4 紋理的結(jié)構(gòu)分析BA形態(tài)學基本運算7.5 形態(tài)分析1腐蝕T 集合A被B腐蝕,表示為 ,其定義為:T 其中A稱為輸入圖像,B稱為結(jié)構(gòu)元素。A B :A Bx BxA腐蝕類似于收縮7.5 形態(tài)分析2. 膨脹T AC 表示集合A的補集, 表示B關(guān)于坐標原點的反射(對稱集)。那么,集合A被B膨脹,表示為A B,定義為:B()CCABAB AB BAB利用圓盤膨脹7.5 形態(tài)分析a) 原始圖像 b) 腐蝕圖像 c) 膨脹圖像7.5 形態(tài)分析3.開運算T 假定A仍為輸入圖像,

18、B為結(jié)構(gòu)元素,利用B對A作開運算,用符號 表示,定義為:()A BA BB開運算實際上是A先被B腐蝕,然后再被B膨脹的結(jié)果。開運算通常用來消除小對象物、在纖細點處分離物體、平滑較大物體的邊界的同時并不明顯改變其體積。A B7.5 形態(tài)分析 a)輸入圖像A b)結(jié)構(gòu)元素B c) d)A BA B用圓盤對輸入圖像開運算的結(jié)果7.5 形態(tài)分析開運算濾除背景噪聲 a) 原圖 b)開運算結(jié)果7.5 形態(tài)分析4閉運算T 閉運算是開運算的對偶運算,定義為先作膨脹然后再作腐蝕。利用B對A作閉運算表示為 ,其定義為: A B() ()A BABB 利用圓盤對輸入圖像進行閉運算7.5 形態(tài)分析 (a) 輸入圖像 (b) 閉運算的結(jié)果 利用閉運算去除前景噪聲7.5 形態(tài)分析5邊界檢測T 利用圓盤結(jié)構(gòu)元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。