下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2009年山東省普通高等教育專升本高等數(shù)學(xué)(公共課)考試要求總要求:考生應(yīng)了解或理解“高等數(shù)學(xué)”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、向量代數(shù)與空間解析幾何、多元函數(shù)微積分學(xué)、無窮級數(shù)、常微分方程的基本概念與基本理論;學(xué)會、掌握或熟練掌握上述各部分的基本方法。應(yīng)注意各部分知識的結(jié)構(gòu)及知識的內(nèi)在聯(lián)系;應(yīng)具有一定的抽象思維能力、邏輯推理能力、運(yùn)算能力、空間想象能力;有運(yùn)用基本概念、基本理論和基本方法正確地推理證明,準(zhǔn)確地計(jì)算;能綜合運(yùn)用所學(xué)知識分析并解決簡單的實(shí)際問題。一、函數(shù)、極限和連續(xù)(一)函數(shù)(1)理解函數(shù)的概念:函數(shù)的定義,函數(shù)的表示法,分段函數(shù)。(2)理解和掌握函數(shù)的簡單性
2、質(zhì):單調(diào)性,奇偶性,有界性,周期性。(3)了解反函數(shù):反函數(shù)的定義,反函數(shù)的圖象。(4)掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算。(5)理解和掌握基本初等函數(shù):冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù),反三角函數(shù)。(6)了解初等函數(shù)的概念。(二)極限(1)理解數(shù)列極限的概念:數(shù)列,數(shù)列極限的定義,能根據(jù)極限概念分析函數(shù)的變化趨勢。會求函數(shù)在一點(diǎn)處的左極限與右極限,了解函數(shù)在一點(diǎn)處極限存在的充分必要條件。(2)了解數(shù)列極限的性質(zhì):唯一性,有界性,四則運(yùn)算定理,夾逼定理,單調(diào)有界數(shù)列,極限存在定理,掌握極限的四則運(yùn)算法則。(3)理解函數(shù)極限的概念:函數(shù)在一點(diǎn)處極限的定義,左、右極限及其與極限的關(guān)系,x趨于無窮(x
3、,x+,x-)時(shí)函數(shù)的極限。(4)掌握函數(shù)極限的定理:唯一性定理,夾逼定理,四則運(yùn)算定理。(5)理解無窮小量和無窮大量:無窮小量與無窮大量的定義,無窮小量與無窮大量的關(guān)系,無窮小量與無窮大量的性質(zhì),兩個(gè)無窮小量階的比較。(6)熟練掌握用兩個(gè)重要極限求極限的方法。(三)連續(xù)(1)理解函數(shù)連續(xù)的概念:函數(shù)在一點(diǎn)連續(xù)的定義,左連續(xù)和右連續(xù),函數(shù)在一點(diǎn)連續(xù)的充分必要條件,函數(shù)的間斷點(diǎn)及其分類。(2)掌握函數(shù)在一點(diǎn)處連續(xù)的性質(zhì):連續(xù)函數(shù)的四則運(yùn)算,復(fù)合函數(shù)的連續(xù)性,反函數(shù)的連續(xù)性,會求函數(shù)的間斷點(diǎn)及確定其類型。(3)掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性定理,最大值和最小值定理,介值定理(包括零點(diǎn)定理),會
4、運(yùn)用介值定理推證一些簡單命題。(4)理解初等函數(shù)在其定義區(qū)間上連續(xù),并會利用連續(xù)性求極限。二、一元函數(shù)微分學(xué)(一)導(dǎo)數(shù)與微分(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,會用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)。(2)會求曲線上一點(diǎn)處的切線方程與法線方程。(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則以及復(fù)合函數(shù)的求導(dǎo)方法。(4)掌握隱函數(shù)的求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù)。(5)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)。(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。(二)中值定理及導(dǎo)數(shù)的應(yīng)用(1)了解羅爾中值定理、
5、拉格朗日中值定理及它們的幾何意義。(2)熟練掌握洛必達(dá)法則求“0/0”、“/ ”、“0”、“-”、“1”、“00”和“0”型未定式的極限方法。(3)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的增減性證明簡單的不等式。(4)理解函數(shù)極值的概念,掌握求函數(shù)的極值和最大(?。┲档姆椒?,并且會解簡單的應(yīng)用問題。(5)會判定曲線的凹凸性,會求曲線的拐點(diǎn)。(6)會求曲線的水平漸近線與垂直漸近線。三、一元函數(shù)積分學(xué)(一)不定積分(1)理解原函數(shù)與不定積分概念及其關(guān)系,掌握不定積分性質(zhì),了解原函數(shù)存在定理。(2)熟練掌握不定積分的基本公式。(3)熟練掌握不定積分第一換元法,掌握第二
6、換元法(限于三角代換與簡單的根式代換)。(4)熟練掌握不定積分的分部積分法。(二)定積分(1)理解定積分的概念與幾何意義,了解可積的條件。(2)掌握定積分的基本性質(zhì)。(3)理解變上限的定積分是變上限的函數(shù),掌握變上限定積分求導(dǎo)數(shù)的方法。(4)掌握牛頓萊布尼茨公式。(5)掌握定積分的換元積分法與分部積分法。(6)理解無窮區(qū)間廣義積分的概念,掌握其計(jì)算方法。(7)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的面積。四、向量代數(shù)與空間解析幾何(一)向量代數(shù)(1)理解向量的概念,掌握向量的坐標(biāo)表示法,會求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。(2)掌握向量的線性運(yùn)算、向量的數(shù)量積與向量積的計(jì)算方法。(3)
7、掌握二向量平行、垂直的條件。(二)平面與直線(1)會求平面的點(diǎn)法式方程、一般式方程。會判定兩平面的垂直、平行。(2)會求點(diǎn)到平面的距離。(3)了解直線的一般式方程,會求直線的標(biāo)準(zhǔn)式方程、參數(shù)式方程。會判定兩直線平行、垂直。(4)會判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。五、多元函數(shù)微積分(一)多元函數(shù)微分學(xué)(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義及二元函數(shù)的極值與連續(xù)概念(對計(jì)算不作要求)。會求二元函數(shù)的定義域。(2)理解偏導(dǎo)數(shù)、全微分概念,知道全微分存在的必要條件與充分條件。(3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計(jì)算方法。(4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。(5)會求二元函數(shù)的全
8、微分。(6)掌握由方程F(x,y,z)=0所確定的隱函數(shù)z=z(x,y)的一階偏導(dǎo)數(shù)的計(jì)算方法。(7)會求二元函數(shù)的無條件極值。(二)二重積分(1)理解二重積分的概念、性質(zhì)及其幾何意義。(2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計(jì)算方法。六、無窮級數(shù)(一)數(shù)項(xiàng)級數(shù)(1)理解級數(shù)收斂、發(fā)散的概念。掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質(zhì)。(2)掌握正項(xiàng)級數(shù)的比值數(shù)別法。會用正項(xiàng)級數(shù)的比較判別法。 (3)掌握幾何級數(shù)、調(diào)和級數(shù)與p級數(shù)的斂散性。(4)了解級數(shù)絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。(二)冪級數(shù)(1)了解冪級數(shù)的概念,收斂半徑,收斂區(qū)間。(2)了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項(xiàng)求導(dǎo)與逐項(xiàng)積分)。(3)掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點(diǎn))的方法。七、常微分方程(一)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度無線電頻率占用費(fèi)支付合同3篇
- 2024年員工與企業(yè)共同創(chuàng)業(yè)股權(quán)入股協(xié)議3篇
- 2024年度五金建材行業(yè)銷售代理合作協(xié)議3篇
- 2024年幼兒園園長任期教育質(zhì)量提升聘用合同范本3篇
- 2024年度金融服務(wù)代理居間合作協(xié)議3篇
- 2024年無保險(xiǎn)勞務(wù)派遣服務(wù)外包與合作協(xié)議3篇
- 2024年度環(huán)保產(chǎn)業(yè)知識產(chǎn)權(quán)保護(hù)及合作協(xié)議范本3篇
- 2024年度風(fēng)景名勝區(qū)栽樹保護(hù)承包合同3篇
- 2024學(xué)校圖書館數(shù)字資源與紙質(zhì)圖書采購一體化合同3篇
- 2024年度個(gè)人與個(gè)人之間互助借款合同3篇
- 北京市朝陽區(qū)2022-2023學(xué)年三年級上學(xué)期英語期末試卷
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 嗶哩嗶哩MATES人群資產(chǎn)經(jīng)營白皮書【嗶哩嗶哩】
- 認(rèn)識實(shí)習(xí)報(bào)告(10篇)
- 銷售部門年度工作規(guī)劃
- 【MOOC】內(nèi)科護(hù)理學(xué)-中山大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年度網(wǎng)絡(luò)安全評估及維護(hù)合同2篇
- 2024年商業(yè)地產(chǎn)買賣合同樣本
- 倉庫主管年度工作總結(jié)
- 內(nèi)蒙古興安盟(2024年-2025年小學(xué)五年級語文)人教版隨堂測試((上下)學(xué)期)試卷及答案
- S16榮濰高速公路萊陽至濰坊段改擴(kuò)建工程可行性研究報(bào)告
評論
0/150
提交評論