高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)實(shí)用版_第1頁(yè)
高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)實(shí)用版_第2頁(yè)
高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)實(shí)用版_第3頁(yè)
高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)實(shí)用版_第4頁(yè)
高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)實(shí)用版_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上三角函數(shù)1. 與(0°360°)終邊相同的角的集合(角與角的終邊重合):終邊在x軸上的角的集合: 終邊在y軸上的角的集合:終邊在坐標(biāo)軸上的角的集合: 終邊在y=x軸上的角的集合: 終邊在軸上的角的集合:若角與角的終邊關(guān)于x軸對(duì)稱,則角與角的關(guān)系:若角與角的終邊關(guān)于y軸對(duì)稱,則角與角的關(guān)系:若角與角的終邊在一條直線上,則角與角的關(guān)系:角與角的終邊互相垂直,則角與角的關(guān)系:2. 角度與弧度的互換關(guān)系:360°=2 180°= 1°=0.01745 1=57.30°=57°18注意:正角的弧度數(shù)為正數(shù),負(fù)

2、角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零.、弧度與角度互換公式: 1rad°57.30°=57°18 1°0.01745(rad)3、弧長(zhǎng)公式:. 扇形面積公式:4、三角函數(shù):設(shè)是一個(gè)任意角,在的終邊上任取(異于原點(diǎn)的)一點(diǎn)P(x,y)P與原點(diǎn)的距離為r,則 ; ; ; ; ;. .5、三角函數(shù)在各象限的符號(hào):(一全二正弦,三切四余弦)6、三角函數(shù)線 正弦線:MP; 余弦線:OM; 正切線: AT.7. 三角函數(shù)的定義域:三角函數(shù) 定義域sinxcosxtanxcotxsecxcscx8、同角三角函數(shù)的基本關(guān)系式: 9、誘導(dǎo)公式:“奇變偶不變,符號(hào)看象限”三角

3、函數(shù)的公式:(一)基本關(guān)系 公式組二 公式組三 公式組四 公式組五 公式組六 (二)角與角之間的互換公式組一 公式組二 公式組三 公式組四 公式組五 , ,. 10. 正弦、余弦、正切、余切函數(shù)的圖象的性質(zhì):(A、0)定義域RRR值域RR周期性 奇偶性奇函數(shù)偶函數(shù)奇函數(shù)奇函數(shù)當(dāng)非奇非偶當(dāng)奇函數(shù)單調(diào)性上為增函數(shù);上為減函數(shù)();上為增函數(shù)上為減函數(shù)()上為增函數(shù)()上為減函數(shù)()上為增函數(shù);上為減函數(shù)()注意:與的單調(diào)性正好相反;與的單調(diào)性也同樣相反.一般地,若在上遞增(減),則在上遞減(增).與的周期是.或()的周期.的周期為2(,如圖,翻折無效). 的對(duì)稱軸方程是(),對(duì)稱中心();的對(duì)稱軸

4、方程是(),對(duì)稱中心();的對(duì)稱中心().當(dāng)·;·.與是同一函數(shù),而是偶函數(shù),則.函數(shù)在上為增函數(shù).(×) 只能在某個(gè)單調(diào)區(qū)間單調(diào)遞增. 若在整個(gè)定義域,為增函數(shù),同樣也是錯(cuò)誤的.定義域關(guān)于原點(diǎn)對(duì)稱是具有奇偶性的必要不充分條件.(奇偶性的兩個(gè)條件:一是定義域關(guān)于原點(diǎn)對(duì)稱(奇偶都要),二是滿足奇偶性條件,偶函數(shù):,奇函數(shù):)奇偶性的單調(diào)性:奇同偶反. 例如:是奇函數(shù),是非奇非偶.(定義域不關(guān)于原點(diǎn)對(duì)稱)奇函數(shù)特有性質(zhì):若的定義域,則一定有.(的定義域,則無此性質(zhì))不是周期函數(shù);為周期函數(shù)();是周期函數(shù)(如圖);為周期函數(shù)();的周期為(如圖),并非所有周期函數(shù)都有

5、最小正周期,例如: . 有.三角函數(shù)的圖象變換有振幅變換、周期變換和相位變換等函數(shù)yAsin(x)的振幅|A|,周期,頻率,相位初相(即當(dāng)x0時(shí)的相位)(當(dāng)A0,0 時(shí)以上公式可去絕對(duì)值符號(hào)),由ysinx的圖象上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)伸長(zhǎng)(當(dāng)|A|1)或縮短(當(dāng)0|A|1)到原來的|A|倍,得到y(tǒng)Asinx的圖象,叫做振幅變換或叫沿y軸的伸縮變換(用y/A替換y)由ysinx的圖象上的點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)(0|1)或縮短(|1)到原來的倍,得到y(tǒng)sin x的圖象,叫做周期變換或叫做沿x軸的伸縮變換(用x替換x)由ysinx的圖象上所有的點(diǎn)向左(當(dāng)0)或向右(當(dāng)0)平行移動(dòng)個(gè)單

6、位,得到y(tǒng)sin(x)的圖象,叫做相位變換或叫做沿x軸方向的平移(用x替換x)由ysinx的圖象上所有的點(diǎn)向上(當(dāng)b0)或向下(當(dāng)b0)平行移動(dòng)b個(gè)單位,得到y(tǒng)sinxb的圖象叫做沿y軸方向的平移(用y+(-b)替換y)由ysinx的圖象利用圖象變換作函數(shù)yAsin(x)(A0,0)(xR)的圖象,要特別注意:當(dāng)周期變換和相位變換的先后順序不同時(shí),原圖象延x軸量伸縮量的區(qū)別。高中數(shù)學(xué)三角函數(shù)常見習(xí)題類型及解法1.三角函數(shù)恒等變形的基本策略。(1)常值代換:特別是用“1”的代換,如1=cos2+sin2=tanx·cotx=tan45°等。(2)項(xiàng)的分拆與角的配湊。如分拆項(xiàng):

7、sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配湊角:=(+),=等。(3)降次與升次。(4)化弦(切)法。(4)引入輔助角。asin+bcos=sin(+),這里輔助角所在象限由a、b的符號(hào)確定,角的值由tan=確定。2.證明三角等式的思路和方法。(1)思路:利用三角公式進(jìn)行化名,化角,改變運(yùn)算結(jié)構(gòu),使等式兩邊化為同一形式。(2)證明方法:綜合法、分析法、比較法、代換法、相消法、數(shù)學(xué)歸納法。3.證明三角不等式的方法:比較法、配方法、反證法、分析法,利用函數(shù)的單調(diào)性,利用正、余弦函數(shù)的有界性,利用單位圓三角函數(shù)線及判別法等。4.解答三角高考題的策略。(1)發(fā)

8、現(xiàn)差異:觀察角、函數(shù)運(yùn)算間的差異,即進(jìn)行所謂的“差異分析”。(2)尋找聯(lián)系:運(yùn)用相關(guān)公式,找出差異之間的內(nèi)在聯(lián)系。(3)合理轉(zhuǎn)化:選擇恰當(dāng)?shù)墓剑偈共町惖霓D(zhuǎn)化。四、例題分析例1已知,求(1);(2)的值.解:(1); (2) .說明:利用齊次式的結(jié)構(gòu)特點(diǎn)(如果不具備,通過構(gòu)造的辦法得到),進(jìn)行弦、切互化,就會(huì)使解題過程簡(jiǎn)化。例2求函數(shù)的值域。解:設(shè),則原函數(shù)可化為,因?yàn)?,所以?dāng)時(shí),當(dāng)時(shí),所以,函數(shù)的值域?yàn)?。?已知函數(shù)。(1)求的最小正周期、的最大值及此時(shí)x的集合;(2)證明:函數(shù)的圖像關(guān)于直線對(duì)稱。解: (1)所以的最小正周期,因?yàn)?,所以,?dāng),即時(shí),最大值為;(2)證明:欲證明函數(shù)的圖像關(guān)

9、于直線對(duì)稱,只要證明對(duì)任意,有成立,因?yàn)?,所以成立,從而函?shù)的圖像關(guān)于直線對(duì)稱。例4 已知函數(shù)y=cos2x+sinx·cosx+1 (xR),(1)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合;(2)該函數(shù)的圖像可由y=sinx(xR)的圖像經(jīng)過怎樣的平移和伸縮變換得到?解:(1)y=cos2x+sinx·cosx+1= (2cos2x1)+ +(2sinx·cosx)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+所以y取最大值時(shí),只需2x+=+2k,(kZ),即 x=+k,(kZ)。所以當(dāng)函數(shù)y取

10、最大值時(shí),自變量x的集合為x|x=+k,kZ(2)將函數(shù)y=sinx依次進(jìn)行如下變換:(i)把函數(shù)y=sinx的圖像向左平移,得到函數(shù)y=sin(x+)的圖像;(ii)把得到的圖像上各點(diǎn)橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到函數(shù)y=sin(2x+)的圖像;(iii)把得到的圖像上各點(diǎn)縱坐標(biāo)縮短到原來的倍(橫坐標(biāo)不變),得到函數(shù)y=sin(2x+)的圖像; (iv)把得到的圖像向上平移個(gè)單位長(zhǎng)度,得到函數(shù)y=sin(2x+)+的圖像。綜上得到y(tǒng)=cos2x+sinxcosx+1的圖像。說明:本題是2000年全國(guó)高考試題,屬中檔偏容易題,主要考查三角函數(shù)的圖像和性質(zhì)。這類題一般有兩種解法:一是化

11、成關(guān)于sinx,cosx的齊次式,降冪后最終化成y=sin (x+)+k的形式,二是化成某一個(gè)三角函數(shù)的二次三項(xiàng)式。本題(1)還可以解法如下:當(dāng)cosx=0時(shí),y=1;當(dāng)cosx0時(shí),y=+1=+1化簡(jiǎn)得:2(y1)tan2xtanx+2y3=0tanxR,=38(y1)(2y3) 0,解之得:yymax=,此時(shí)對(duì)應(yīng)自變量x的值集為x|x=k+,kZ例5已知函數(shù) ()將f(x)寫成的形式,并求其圖象對(duì)稱中心的橫坐標(biāo); ()如果ABC的三邊a、b、c滿足b2=ac,且邊b所對(duì)的角為x,試求x的范圍及此時(shí)函數(shù)f(x)的值域.解: ()由=0即即對(duì)稱中心的橫坐標(biāo)為()由已知b2=ac 即的值域?yàn)?綜

12、上所述, , 值域?yàn)?. 說明:本題綜合運(yùn)用了三角函數(shù)、余弦定理、基本不等式等知識(shí),還需要利用數(shù)形結(jié)合的思想來解決函數(shù)值域的問題,有利于培養(yǎng)學(xué)生的運(yùn)算能力,對(duì)知識(shí)進(jìn)行整合的能力。例6在中,a、b、c分別是角A、B、C的對(duì)邊,且,(1)求的值;(2)若,且a=c,求的面積。解:(1)由正弦定理及,有,即,所以,又因?yàn)?,所以,因?yàn)?,所以,又,所以?2)在中,由余弦定理可得,又,所以有,所以的面積為。三角函數(shù)一、選擇題(本大題共10小題,每小題5分,共50分)1已知點(diǎn)P(tan,cos)在第三象限,則角的終邊在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 2集合Mx|x±

13、;,kZ與Nx|x,kZ之間的關(guān)系是 ( )A.MNB.NM C.MN D.MN 3若將分針撥慢十分鐘,則分針?biāo)D(zhuǎn)過的角度是 ( )A.60° B.60° C.30° D.30° 4已知下列各角(1)787°,(2)957°,(3)289°,(4)1711°,其中在第一象限的角是 ( )A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4) 5設(shè)a0,角的終邊經(jīng)過點(diǎn)P(3a,4a),那么sin2cos的值等于 ( )A. B. C. D. 6若cos(),2,則sin(2)等于 ( )A. B. C

14、. D.± 7若是第四象限角,則是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 8已知弧度數(shù)為2的圓心角所對(duì)的弦長(zhǎng)也是2,則這個(gè)圓心角所對(duì)的弧長(zhǎng)是 ( )A.2 B. C.2sin1 D.sin2 9如果sinxcosx,且0x,那么cotx的值是 ( )A. B.或 C. D. 或 10若實(shí)數(shù)x滿足log2x2sin,則|x1|x10|的值等于 ( )A.2x9 B.92x C.11 D.9 二、填空題(本大題共6小題,每小題5分,共30分)11tan300°cot765°的值是_. 12若2,則sincos的值是_. 13不等式(lg20)

15、2cosx1,(x(0,)的解集為_. 14若滿足cos,則角的取值集合是_.15若cos130°a,則tan50°_. 16已知f(x),若(,),則f(cos)f(cos)可化簡(jiǎn)為_. 三、解答題(本大題共5小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟)17(本小題滿分12分)設(shè)一扇形的周長(zhǎng)為C(C0),當(dāng)扇形中心角為多大時(shí),它有最大面積?最大面積是多少?18(本小題滿分14分)設(shè)90°180°,角的終邊上一點(diǎn)為P(x,),且cosx,求sin與tan的值.19(本小題滿分14分)已知,sin,cos,求m的值.20(本小題滿分15分)已知

16、0°45°,且lg(tan)lg(sin)lg(cos)lg(cot)2lg3lg2,求cos3sin3的值.21(本小題滿分15分)已知sin(5)cos()和cos()cos(),且0,0,求和的值. 三角函數(shù)一、選擇題(本大題共10小題,每小題5分,共50分)1下列函數(shù)中,最小正周期為的偶函數(shù)是 ( )A.ysin2x B.ycosC.ysin2xcos2xD.y 2設(shè)函數(shù)ycos(sinx),則 ( )A.它的定義域是1,1 B.它是偶函數(shù)C.它的值域是cos1,cos1 D.它不是周期函數(shù) 3把函數(shù)ycosx的圖象上的所有點(diǎn)的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)擴(kuò)大到原

17、來的兩倍,然后把圖象向左平移個(gè)單位.則所得圖象表示的函數(shù)的解析式為 ( )A.y2sin2xB.y2sin2xC.y2cos(2x)D.y2cos() 4函數(shù)y2sin(3x)圖象的兩條相鄰對(duì)稱軸之間的距離是 ( )A. B. C. D. 5若sincosm,且m1,則角所在象限是 ( )A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限 6函數(shù)y|cotx|·sinx(0x且x)的圖象是 ( )7設(shè)y,則下列結(jié)論中正確的是 ( )A.y有最大值也有最小值 B.y有最大值但無最小值C.y有最小值但無最大值 D.y既無最大值又無最小值 8函數(shù)ysin(2x)的單調(diào)增區(qū)間是 ( )A.k,

18、k(kZ) B.k,k(kZ)C.k,k(kZ) D.k,k(kZ) 9已知0x,且a0,那么函數(shù)f(x)cos2x2asinx1的最小值是 ( )A.2a1 B.2a1 C.2a1 D.2a 10求使函數(shù)ysin(2x)cos(2x)為奇函數(shù),且在0,上是增函數(shù)的的一個(gè)值為 ( )A. B. C. D. 二、填空題(本大題共6小題,每小題5分,共30分)11函數(shù)y的值域是_. 12函數(shù)y的定義域是_.13如果x,y0,且滿足|sinx|2cosy2,則x_,y_.14已知函數(shù)y2cosx,x0,2和y2,則它們的圖象所圍成的一個(gè)封閉的平面圖形的面積是_ 15函數(shù)ysinxcosxsin2x的值域是_. 16關(guān)于函數(shù)f(x)4sin(2x)(xR)有下列命題:由f(x1)f(x2)0可得x1x2必是的整數(shù)倍;yf(x)的表達(dá)式可改為y4cos(2x);yf(x)的圖象關(guān)于點(diǎn)(,0)對(duì)稱;yf(x)的圖象關(guān)于直線x對(duì)稱.其中正確的命題的序號(hào)是_. 三、解答題(本大題共5小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟)17(本小題滿分12分)如圖為函數(shù)yAsin(x)(A0,0)的圖象的一部分,試求該函數(shù)的一個(gè)解析式.18(本小題滿分14分)已知函數(shù)y(sinxcosx)22cos2x.(xR)(1)當(dāng)y取得最大值時(shí),求自變量x的取值集合.(2)該函數(shù)圖象可由ysinx

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論