凝聚態(tài)物理現(xiàn)象理論與計(jì)算I 周森_第1頁(yè)
凝聚態(tài)物理現(xiàn)象理論與計(jì)算I 周森_第2頁(yè)
凝聚態(tài)物理現(xiàn)象理論與計(jì)算I 周森_第3頁(yè)
凝聚態(tài)物理現(xiàn)象理論與計(jì)算I 周森_第4頁(yè)
凝聚態(tài)物理現(xiàn)象理論與計(jì)算I 周森_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、會(huì)計(jì)學(xué)1凝聚態(tài)物理現(xiàn)象理論與計(jì)算凝聚態(tài)物理現(xiàn)象理論與計(jì)算I 周森周森Correlation: motion of one influences the othersUncorrelated:Light traffic = “ideal gas”Correlations: jammed(Emergence) Controlledcorrelations:Fast and efficientCorrelations and emergence are everywhere. Correlated particles: electrons, atoms, molecules, grains, bio

2、logical structures, carsThe human heart is developmentally programmed to occur in the same position again and again. Self-assembling of nano-metals in a solutionSingle crystal: very strong correlationsPacking of ions in metallic glasses1 cm3 of matter 1023 atoms, electronsWeak correlations conventio

3、nal material, semiconductorStrong correlations unique materials/device properties Superconductivity Magnetism Spin-charge coupling, e.g. multiferroics Spin-orbital coupling, e.g. topological insulator Large thermopower Controlled many-electron coherence in nanostructures Overlap: tCoulomb: UCorrelat

4、ion strength: t/ULarge overlap of s+p orbitals gives very extended wavefunctionsLocalization of d+f orbitals enhances Coulomb interactionHigh quality and flexible fabricationMaterials chemistry challenging! Sensitivity due to weak donor/acceptor bindingSensitivity due to competing ordered statesNo i

5、ntrinsic magnetism or other correlationsDiverse magnetic and other correlationsIntrinsic length scale = large effective Bohr radius a0Intrinsic length scales as short as atomic sizeWeak correlation and large a0 enable simple and accurate modelingStrong correlations, very challenging to existing theo

6、retical toolsPotential gain: new multifunctional materials and devices, which do more and do it better than semiconductors do.Challenges: Understanding phenomena, controlling materials and interfacesSm(O1-xFx)FeAs Mar. (2008) Conventional SC:1911 onwards: Electron-phonon superconductors1957 BCS Theo

7、ry Highest Tc: MgB2 (2001)Unconventional SC:1977: Heavy Fermion SC1986: High Tc cuprates (many Tc77K) LaSrCuO, YBaCuO, BiSrCaCuO 1995: Ruthenates SrRuO, CaSrRuO2003: Cobaltates NaCoO22008: Fe-Pnictides LaOFeAs, BaFe2As2 SC: perfect conductor + perfect diamagnetismSC is not driven by electron-phonon

8、interaction easy to argue (e-ph interactions can still be important)Electron-electron interaction is the driving force Difficult to prove“New clues”: unconventional SCs are often found in the vicinity of electronic ordered phases induced by interactionsMagnetism : Cuprates, Heavy Fermions, Fe-pnicti

9、desCharge order: Organics, transition-metal chalcogenides, CuxTiSe2, Ba1-xKxBaO3Electronic Phase separation/Nematic: Cuprates, Fe-pnictides.q What are the most basic properties of a doped Mott insulator? Experimental evidence from the cupratesq How to construct theoretical models for cuprates: from

10、Cu d-electrons and O p-electrons to the effective t-J modelq What are the most essential ideas of Resonance Valence Bond? Short-range RVB from the t-J modelq Slave-boson formulationY-123CuO2CuO2CuO2CuO2CuO YBa2Cu3O7La-214q Two-dimensional layered structureq Most important physics in the common CuO2

11、planeBi-2212 Octahedral crystal field splittingCu2+Ar3d 9JT distortionO2-Be2p6Undoped cuprates have 1e/unit cell half-filled, low spin S=1/2px, pypzCopperOxygen3d electrons2p electronsCuprates are p-d charge transfer systemsTransition metalsCu, Fe, Co, Ru (4d) Oxygen, Pnictigen, ChalcogenO, As, P, S

12、e, Te .q Two-dimensional layered structureq Most important physics in the common CuO2 planeElectron Picture: as 1 electron on 3d8U = 7 10 eVEnergy cost for charge transferpd= U-p= 1 2eV In contrast, Fe-pnictides are charge transfer metalsHow to describe Cu2+=3d9 ?p-d electron transferUp3d83d10UU-p3d

13、83d10p-d hole transferCuCuOOHole Picture: as 1 hole on 3d10q Everything starts from doping a half-filled AF Mott insulatorqThis phase diagram is one realization of doping a charge transfer Mott insulatorq High-Tc is a strong correlation problem. No weak-coupling analog!Most essential ingredients of

14、a doped Mott insulator: Particle number = 1-x Mobile carrier density/coherence factor = xExperimental evidence Large Fermi surface with Luttinger volume proportional to 1-x (ARPES + Quantum Oscillations) Quantities having to do with coherent motion of holes scale with doping x (Optical spectroscopy

15、and transport)Padilla et al, PRB (2005) Effective carrier density Drude weight Superfluid density effNxxxCoherentweight ZA Low temperature QP coherence weight scales with x (ARPES)Ding et. al., PRL87, 227001 (2001)These essential properties do not come from weaklyinteracting electrons Strong correla

16、tion physics is required to understand cupratesConstruction of theoretical models for the stronglycorrelated CuO2 planeMinimal 3-band model in hole picture.Cu: 3dx2-y2(d), Planar O: 2px,2py, , , , , , , ,0, H.c. H.c.pdpdppddiiiiiiiiiii xi yixiyii xiyi yixi yiyiHppddn ndpppUttppppppp Example set: tpd

17、 = 1 eV, tpp = 0.5 eV, p-d0= 6.5 eV, U = 10 eVThis is an Anderson Lattice Model: q Charge transfer insulator when undoped (one hole per Cu) if tpd t, project out doubly occupied sitesCanonical transformation t-J model in projected Hilbert space ,14 (. .)t Jiiiji ji jijGGHP c chc PntnJS S24AF superex

18、change: 0No double occ. constraint:=0,1 iicJctU0 Many theories for high-Tc, but the theory is RVBResonating Valence bond共振共價(jià)鍵共振共價(jià)鍵RVB state for Heisenberg model on triangular lattice (1973)Anderson resonating valence bond (RVB) ideaSuperposition of spin-singlet pairs rather than Neel state Better ac

19、count for the quantum fluctuations: spin liquid stateRVB picture for high-Tc cuprates (1987)12 Electrons form spin-singlet pairs, mobilized upon doping and condense into a SC stateBut we know cuprates have antiferromagnetic order at x=0AFRVBRVBAFEE0Frustration AFT=0Spin LiquidSCRVBCuprates0AFHiddenS

20、pin LiquidSCTShort-range RVBIn RVB picture: There is not a pairing mechanism. Spin singlet pairs already exist. SC comes from coherence of pairsSpin pairing through instantaneous superexchange interaction.How does this picture materialize through t-J model?Most frustrated2D latticeempty site: empty0

21、ibsingly occupied site: emptyiif bsingly occupied site: emptyiif bq Slave-boson for projected Hilbert space:iiifcbSpinless bosonSpin-carrying fermion (spinon),1H.c.iiiiiiffj i ijijiji jiffbHt b b ffJbSS,H.constraintc. ()s 1tJijijiii jijHtc cJc c S S0 Each site is and must be occupied by either a bos

22、on or a fermionConstraints equality:1iiiiffb bEnforced by Lagrange multiplierscompleteness22*11()h.c.+(). 44ffijiijijjijiijijjSSfff ff fRVB decoupling of exchange interaction: ijijijijijfff ff fParamagnetic valence bondSpin-singlet pairingiiibbb0 ijijijiibbUniform mean-field solution:ij symmetry of

23、the pair: s-wave, d-wave, Not in AFMTd-SC0,0b SG00b incoherent metal0,0b Fermi liquid0,0b Kotliar and Liu, PRB38, 5142 (1988).Bose condensationSpinon pairingantinodenode Superexchange d-wave SC PG: spin pairing gap Tc is set by phase coherence below optimal dopingThe human heart is developmentally p

24、rogrammed to occur in the same position again and again. 1 cm3 of matter 1023 atoms, electronsWeak correlations conventional material, semiconductorStrong correlations unique materials/device properties Superconductivity Magnetism Spin-charge coupling, e.g. multiferroics Spin-orbital coupling, e.g. topological insulator Large thermopower Controlled many-electron coherence in nanostructures Overlap: tCoulomb: UCorrelation strength: t/UBand (Pauli) Insulator = Even number of e- per siteMott Insulator = Interaction driven insulatorhalf-filled case = one e- per site hopping

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論