




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、一、柱體、錐體、臺體的表面積一、柱體、錐體、臺體的表面積 (1)(1)矩形面積公式:矩形面積公式: _。 (2)(2)三角形面積公式:三角形面積公式:_。 正三角形面積公式:正三角形面積公式:_。 (3)(3)圓面積面積公式:圓面積面積公式:_。 (4)(4)圓周長公式:圓周長公式: _。 (5)(5)扇形面積公式:扇形面積公式: _。 (6)(6)梯形面積公式:梯形面積公式: _abS ahS21243aS 2rS2CrhbaS)(21復(fù)習(xí)回顧復(fù)習(xí)回顧12slr柱體柱體錐體錐體臺體臺體球球多面體多面體旋轉(zhuǎn)體旋轉(zhuǎn)體 在初中已經(jīng)學(xué)過了正方體和長方體的表面積,你知道在初中已經(jīng)學(xué)過了正方體和長方體的
2、表面積,你知道正方體和長方體的表面積怎樣得到的正方體和長方體的表面積怎樣得到的幾何體表面積幾何體表面積展開圖展開圖平面圖形面積平面圖形面積空間問題空間問題平面問題平面問題把直三棱柱側(cè)面沿一條側(cè)棱展開,得到什么圖形?側(cè)面積怎么求?chhcbaS )(直棱拄側(cè)直棱拄側(cè)habcabchh底側(cè)表面積SSS2正棱錐的側(cè)面展開圖是什么?正棱錐的側(cè)面展開圖是什么?側(cè)面展開正棱錐的正棱錐的側(cè)面積側(cè)面積如何計如何計算?算?表面積表面積如何計算?如何計算?21chS正棱錐側(cè)正棱錐側(cè) 正棱臺的正棱臺的側(cè)面展開圖側(cè)面展開圖是什么?是什么?側(cè)面展開側(cè)面展開hh正棱臺的正棱臺的側(cè)面積側(cè)面積如何計算?如何計算? 表面積表面
3、積如何計算?如何計算?) 21hccS (正棱臺側(cè)正棱臺側(cè)h一般地一般地, ,多面體的表面積就是各個面的面積之和多面體的表面積就是各個面的面積之和表面積表面積= =側(cè)面積側(cè)面積+ +底面積底面積小結(jié):1、弄清楚柱、錐、臺的側(cè)面展開圖的形狀是關(guān)鍵; 2、對應(yīng)的面積公式)cc21hS(正正棱棱臺臺C=021chS三三棱棱錐錐C=CchchS 直直棱棱柱柱 例例1 已知棱長為已知棱長為a,各面均為等邊三角形,各面均為等邊三角形的四面體的四面體S-ABC,求它的表面積,求它的表面積 BCAS 例例1 已知棱長為已知棱長為a,各面均為等邊三角形的四面,各面均為等邊三角形的四面體體S-ABC,求它的表面積
4、,求它的表面積 DBCASaaaBDSBSD2322222所以:所以: 243232121aaaSDBCSSBC因此,四面體因此,四面體S-ABC 的表面積的表面積交交BC于點于點D解:先求解:先求 的面積,過點的面積,過點S作作SBCBCSD 223434aaS因為因為aBC 思考)(2222lrrrlrS圓柱表面積rlr2)(2lrrrlrS圓錐表面積r2lOr)(22rll rrrSr2lOrO r2 rlrrrrS222122lOrO rlOrlOOr)(2lrrS柱)(lrrS?)(22rllrrrS?rr上底擴大上底擴大r0上底縮小上底縮小圓柱、圓錐、圓臺三者的表面積公式之間有什么
5、關(guān)系?圓柱、圓錐、圓臺三者的表面積公式之間有什么關(guān)系? 例例2 2 如圖,一個圓臺形花盆盆口直徑如圖,一個圓臺形花盆盆口直徑20 cm20 cm,盆,盆底直徑為底直徑為15cm15cm,底部滲水圓孔直徑為,底部滲水圓孔直徑為1.5 cm1.5 cm,盆壁長,盆壁長15cm15cm那么花盆的表面積約是多少平方厘米(那么花盆的表面積約是多少平方厘米( 取取3.143.14,結(jié)果精確到,結(jié)果精確到1 1 )?)?2cmcm15cm20cm15 解:由圓臺的表面積公式得解:由圓臺的表面積公式得 花盆的表面積:花盆的表面積:2225 . 11522015215215S)(9992cm答:花盆的表面積約是
6、答:花盆的表面積約是999 999 2cm)(22rllrrrS圓臺表面積各面面積之和各面面積之和rr0 r展開圖展開圖22()Srrr lrl 圓臺圓臺圓柱圓柱)(2lrrS)(lrrS圓錐圓錐空間問題轉(zhuǎn)化成平面問題空間問題轉(zhuǎn)化成平面問題棱柱、棱錐、棱柱、棱錐、棱臺棱臺圓柱、圓錐、圓柱、圓錐、圓臺圓臺所用的數(shù)學(xué)思想:所用的數(shù)學(xué)思想:柱體、錐體、臺體的表面積柱體、錐體、臺體的表面積二、柱體、錐體、臺體的體積二、柱體、錐體、臺體的體積長方體體積:長方體體積:正方體體積:正方體體積:圓柱的體積:圓柱的體積:Vabh3Va2Vr hVShabhaaah底面積底面積高高aa 2 以前學(xué)過特殊的棱柱以前
7、學(xué)過特殊的棱柱正方體、長方體以及圓柱正方體、長方體以及圓柱的體積公式的體積公式, ,它們的體積公式可以統(tǒng)一為:它們的體積公式可以統(tǒng)一為:柱體(棱柱、圓柱)柱體(棱柱、圓柱)的體積公式:的體積公式:ShV (其中(其中S為底面面積,為底面面積,h為柱體的高)為柱體的高)VSh3.13.1錐體(棱錐、圓錐)的體積錐體(棱錐、圓錐)的體積 (底面積(底面積S,高高h(yuǎn)) 注意:三棱錐的頂點和底面可以根據(jù)需要變換,四面體的每一個面都可以作為底面,可以用來求點到面的距離問題問題:錐體錐體( (棱錐、圓錐)棱錐、圓錐)的體積的體積shV31三棱錐椎體(圓錐、棱錐)的體積公式:椎體(圓錐、棱錐)的體積公式:S
8、hV31(其中(其中S為底面面積,為底面面積,h為高)為高)h 由此可知,由此可知, 棱柱與圓柱棱柱與圓柱的體積公式類似,都是的體積公式類似,都是底面面積乘高;底面面積乘高; 棱錐與圓錐棱錐與圓錐的體積公式類似,都是的體積公式類似,都是底面面積乘高的底面面積乘高的 13ss/ss/hx四四.臺體的體積臺體的體積V V臺體臺體= =1 1h(s+ss +s)h(s+ss +s)3 3上下底面積分別是上下底面積分別是s/,s,高是高是h,則,則VVV大 錐小 錐1133113313S hShSSSSShSSS hh SSSSS hxSS11 =33S xhS x 11 =33ShSSx2xSxhS
9、xSxhSS hxSSSShx臺體(棱臺、圓臺)的體積公式臺體(棱臺、圓臺)的體積公式hSSSSV)(31 , S Sh其中 ,分別為上、下底面面積,為圓臺(棱臺)的高柱體、錐體、臺體的體積公式之間有什么關(guān)系?柱體、錐體、臺體的體積公式之間有什么關(guān)系?hSSSSV)(31S為底面面積,為底面面積,h為柱體高為柱體高ShV SS 分別為上、下分別為上、下底面面積,底面面積,h 為臺體為臺體高高ShV310SS為底面面積,為底面面積,h為錐體高為錐體高上底擴大上底擴大上底縮小上底縮小,SS21.,a m已知圓錐的表面積且它的側(cè)面展開圖是一個半圓,求這個圓錐的底面直徑。例例2 2 如圖,一個圓臺形花
10、盆盆口直徑如圖,一個圓臺形花盆盆口直徑20 cm20 cm,盆底直徑為盆底直徑為15cm15cm,底部滲水圓孔直徑為,底部滲水圓孔直徑為1.5 1.5 cmcm,盆壁長,盆壁長15cm15cm那么花盆的表面積約是多那么花盆的表面積約是多少平方厘米?少平方厘米?cm15cm20cm15 例例3 有一堆規(guī)格相同的鐵制(鐵的密度是有一堆規(guī)格相同的鐵制(鐵的密度是 )六角螺帽共重)六角螺帽共重5.8kg,已知底面是正六邊,已知底面是正六邊形,邊長為形,邊長為12mm,內(nèi)孔直徑為,內(nèi)孔直徑為10mm,高為,高為10mm,問這堆螺帽大約有多少個(問這堆螺帽大約有多少個( 取取3.14)?)?3/8 . 7
11、cmg 解:六角螺帽的體積是六棱解:六角螺帽的體積是六棱柱的體積與圓柱體積之差,即柱的體積與圓柱體積之差,即: :10)210(14. 3106124322V)(29563mm)(956. 23cm所以螺帽的個數(shù)為所以螺帽的個數(shù)為252)956. 28 . 7(10008 . 5(個)(個)答:這堆螺帽大約有答:這堆螺帽大約有252252個個RROORR球的體積:球的體積:一個半徑和高都等于一個半徑和高都等于R的圓柱,挖去一個的圓柱,挖去一個以上底面為底面,下底面圓心為頂點的圓錐以上底面為底面,下底面圓心為頂點的圓錐后,所得的幾何體的體積與一個半徑為后,所得的幾何體的體積與一個半徑為R的的半球
12、的體積相等。半球的體積相等。探究球球1 1V =V =2 23 32 2= = R R3 33 3球球4 4V =V = R R3 3RROORR22221 1 RR-RR- RRRR3 3半徑為半徑為R R的球的體積的球的體積 343VR第一步:分割第一步:分割O O球面被分割成球面被分割成n n個網(wǎng)格,個網(wǎng)格, 表面積分別為:表面積分別為:nSSSS.321,則球的表面積則球的表面積:nSSSSS.321則球的體積為:則球的體積為:設(shè)設(shè)“小錐體小錐體”的體積的體積為:為:iViVnVVVVV.321iSO O知識點三、球的表面積和體積知識點三、球的表面積和體積(O O第二步:求近似和第二步
13、:求近似和O Oih由第一步得由第一步得:nVVVVV.321nnhShShShSV31313131332211.iiihSV31iSiV第三步:轉(zhuǎn)化為球的表面積第三步:轉(zhuǎn)化為球的表面積RSVii31 如果網(wǎng)格分的越細(xì)如果網(wǎng)格分的越細(xì), ,則則: :RSRSRSRSVni3131313132.RSSSSSRni313132).( 由由 得得: :334RV 球的體積球的體積: :2 24 4R RS S iSiVih的值就趨向于球的半徑的值就趨向于球的半徑R RRihiSO OiV“小錐體小錐體”就越接近小棱錐。就越接近小棱錐。半徑為半徑為R R的球的的球的表面積表面積公式公式24SR設(shè)球的半
14、徑為R,則球的體積公式為V球 .43R3例例1(2009年高考上海卷年高考上海卷)若球若球O1、O2表表面積之比面積之比4,則它們的半徑之比,則它們的半徑之比_.(1)(1)若球的表面積變?yōu)樵瓉淼娜羟虻谋砻娣e變?yōu)樵瓉淼? 2倍倍, ,則半徑變?yōu)樵瓉淼膭t半徑變?yōu)樵瓉淼谋丁1丁?2)(2)若球半徑變?yōu)樵瓉淼娜羟虬霃阶優(yōu)樵瓉淼? 2倍,則表面積變?yōu)樵瓉淼谋叮瑒t表面積變?yōu)樵瓉淼谋?。倍?3)(3)若兩球表面積之比為若兩球表面積之比為1:21:2,則其體積之比是,則其體積之比是。(4)(4)若兩球體積之比是若兩球體積之比是1:21:2,則其表面積之比是,則其表面積之比是。例例2 2:2422:134:
15、1例例3.3.如圖,正方體如圖,正方體ABCD-AABCD-A1 1B B1 1C C1 1D D1 1的棱長為的棱長為a,a,它的各個它的各個頂點都在球頂點都在球O O的球面上,問球的球面上,問球O O的表面積。的表面積。A AB BC CD DD D1 1C C1 1B B1 1A A1 1O OA AB BC CD DD D1 1C C1 1B B1 1A A1 1O O分析:正方體內(nèi)接于球,則由球和正方體都是中心對稱圖形可分析:正方體內(nèi)接于球,則由球和正方體都是中心對稱圖形可知,它們中心重合,則正方體對角線與球的直徑相等。知,它們中心重合,則正方體對角線與球的直徑相等。略解:22222
16、11113423,)2()2(22:aRSaRaaRaDBRDBDDBRt得得:,中中變題變題1.1.如果球如果球O O和這個正方體的六個面都相切,則有和這個正方體的六個面都相切,則有S=S=。變題變題2.2.如果球如果球O O和這個正方體的各條棱都相切,則有和這個正方體的各條棱都相切,則有S=S=。2a2 2 a 關(guān)鍵關(guān)鍵:找正方體的棱長找正方體的棱長a a與球半徑與球半徑R R之間的關(guān)系之間的關(guān)系OABCO 例例4已知過球面上三點已知過球面上三點A、B、C的截面到球心的截面到球心O的距離的距離等于球半徑的一半,且等于球半徑的一半,且AB=BC=CA=cm,求球的體,求球的體積,表面積積,表
17、面積解:如圖,設(shè)球解:如圖,設(shè)球O半徑為半徑為R,截面截面 O的半徑為的半徑為r,r332AB2332AO 是正三角形,是正三角形,ABCROO ,2 題型一題型一 旋轉(zhuǎn)體的表面積及其體積旋轉(zhuǎn)體的表面積及其體積 如圖所示如圖所示, ,半徑為半徑為R R的半圓內(nèi)的的半圓內(nèi)的 陰影部分以直徑陰影部分以直徑ABAB所在直線為軸所在直線為軸, ,旋旋 轉(zhuǎn)一周得到一幾何體轉(zhuǎn)一周得到一幾何體, ,求該幾何體的求該幾何體的 表面積表面積( (其中其中BACBAC=30=30) )及其體積及其體積. . 先分析陰影部分旋轉(zhuǎn)后形成幾何體的先分析陰影部分旋轉(zhuǎn)后形成幾何體的 形狀形狀, ,再求表面積再求表面積. .
18、解解 如圖所示如圖所示, ,過過C C作作COCO1 1ABAB于于O O1 1, ,在半圓中可得在半圓中可得BCABCA=90=90, ,BACBAC=30=30, ,ABAB=2=2R R, ,ACAC= = , ,BCBC= =R R, ,S S球球=4=4R R2 2, ,R3,231RCO ,231123234,2323,233232222112121RRRRSSSSRRRSRRRSBOAOBOAO側(cè)圓錐側(cè)圓錐球幾何體表側(cè)圓錐側(cè)圓錐.23112R表面積為旋轉(zhuǎn)所得到的幾何體的 解決這類題的關(guān)鍵是弄清楚旋轉(zhuǎn)后所解決這類題的關(guān)鍵是弄清楚旋轉(zhuǎn)后所形成的圖形的形狀,再將圖形進(jìn)行合理的分割,形成
19、的圖形的形狀,再將圖形進(jìn)行合理的分割,然后利用有關(guān)公式進(jìn)行計算然后利用有關(guān)公式進(jìn)行計算. . .652134)(41314131,34333111221111221113RRRVVVVBORCOBOVAORCOAOVRVBOAOBOAO圓錐圓錐球幾何體圓錐圓錐球又知能遷移知能遷移2 2 已知球的半徑為已知球的半徑為R R,在球內(nèi)作一個內(nèi),在球內(nèi)作一個內(nèi) 接圓柱,這個圓柱底面半徑與高為何值時,它接圓柱,這個圓柱底面半徑與高為何值時,它 的側(cè)面積最大?側(cè)面積的最大值是多少?的側(cè)面積最大?側(cè)面積的最大值是多少? 解解 如圖為軸截面如圖為軸截面. . 設(shè)圓柱的高為設(shè)圓柱的高為h h,底面半徑為,底面半
20、徑為r r, 側(cè)面積為側(cè)面積為S S,則,則,)2(222Rrh.2414,2,22,21.41)21(4)(442.2242242222222222RRRhRrRrRRrrRrrRrrhSrRh最大值是最大圓柱側(cè)面積時即當(dāng)且僅當(dāng)即知能遷移知能遷移2 2 已知球的半徑為已知球的半徑為R R,在球內(nèi)作一個內(nèi),在球內(nèi)作一個內(nèi) 接圓柱,這個圓柱底面半徑與高為何值時,它接圓柱,這個圓柱底面半徑與高為何值時,它 的側(cè)面積最大?側(cè)面積的最大值是多少?的側(cè)面積最大?側(cè)面積的最大值是多少? 解解 如圖為軸截面如圖為軸截面. . 設(shè)圓柱的高為設(shè)圓柱的高為h h,底面半徑為,底面半徑為r r, 側(cè)面積為側(cè)面積為S
21、 S,則,則,)2(222Rrh.2414,2,22,21.41)21(4)(442.2242242222222222RRRhRrRrRRrrRrrRrrhSrRh最大值是最大圓柱側(cè)面積時即當(dāng)且僅當(dāng)即題型二題型二 多面體的表面積及其體積多面體的表面積及其體積 一個正三棱錐的底面邊長為一個正三棱錐的底面邊長為6 6,側(cè)棱長,側(cè)棱長 為為 ,求這個三棱錐的體積,求這個三棱錐的體積. . 本題為求棱錐的體積問題本題為求棱錐的體積問題. .已知底面已知底面 邊長和側(cè)棱長,可先求出三棱錐的底面面積邊長和側(cè)棱長,可先求出三棱錐的底面面積 和高,再根據(jù)體積公式求出其體積和高,再根據(jù)體積公式求出其體積. .
22、解解 如圖所示,如圖所示, 正三棱錐正三棱錐S SABCABC. . 設(shè)設(shè)H H為正為正ABCABC的中心,的中心, 連接連接SHSH, 則則SHSH的長即為該正三棱錐的高的長即為該正三棱錐的高. .15連接連接AHAH并延長交并延長交BCBC于于E E,則則E E為為BCBC的中點,且的中點,且AHAHBCBC. .ABCABC是邊長為是邊長為6 6的正三角形,的正三角形,, 33623AE. 93393131312153215,Rt. 393362121,. 323222SHSV,AHSASH,AHSASHAAEBCSABCAEAHABCABC正三棱錐中在中在 求錐體的體積,要選擇適當(dāng)?shù)牡?/p>
23、面和求錐體的體積,要選擇適當(dāng)?shù)牡酌婧透?,然后?yīng)用公式高,然后應(yīng)用公式 進(jìn)行計算即可進(jìn)行計算即可. .常用方常用方法:割補法和等積變換法法:割補法和等積變換法. .(1 1)割補法:求一個幾何體的體積可以將這個幾)割補法:求一個幾何體的體積可以將這個幾何體分割成幾個柱體、錐體,分別求出錐體和柱何體分割成幾個柱體、錐體,分別求出錐體和柱體的體積,從而得出幾何體的體積體的體積,從而得出幾何體的體積. .(2 2)等積變換法:利用三棱錐的任一個面可作為)等積變換法:利用三棱錐的任一個面可作為三棱錐的底面三棱錐的底面. .求體積時,可選擇容易計算的方求體積時,可選擇容易計算的方式來計算;利用式來計算;利用“等積性等積性”可求可求“點到面的點到面的距離距離”. .ShV31題型題型三三 組合體的表面積及其體積組合體的表面積及其體積 (12 (12分分) )如圖所示如圖所示, ,在等腰梯形在等腰梯形ABCDABCD中中, , ABAB=2=2DCDC=2=2,DABDAB=60=60,E E為為ABA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加工承攬意向合同范本
- 出讓合同范本
- 買磚合同范本
- 兒女撫養(yǎng)合同范本
- 農(nóng)村租房建基站合同范本
- 代建合同范本政府蓋章
- 世界500強合同范本
- 會務(wù)代辦合同范本
- 供貨定金合同范本
- 別墅門窗出售合同范本
- 2024至2030年中國毛絨玩具數(shù)據(jù)監(jiān)測研究報告
- 建筑復(fù)工復(fù)產(chǎn)安全培訓(xùn)
- GB 21258-2024燃煤發(fā)電機組單位產(chǎn)品能源消耗限額
- 八年級上學(xué)期語文12月月考試卷
- 醛固酮增多癥與原發(fā)性醛固酮增多癥概述
- 山東省淄博市2023-2024學(xué)年高一下學(xué)期期末教學(xué)質(zhì)量檢測數(shù)學(xué)試題
- 廣東省2024年普通高中學(xué)業(yè)水平合格性考試語文仿真模擬卷01(解析版)
- 2025屆新高考生物精準(zhǔn)復(fù)習(xí)+提高農(nóng)作物產(chǎn)量
- 第6課歐洲的思想解放運動教學(xué)設(shè)計2023-2024學(xué)年中職高一下學(xué)期高教版(2023)世界歷史
- 2024年云南省昆明市選調(diào)生考試(公共基礎(chǔ)知識)綜合能力題庫必考題
- 2024年時政試題庫(奪分金卷)
評論
0/150
提交評論