版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、 2Microstructural design considerations for Li-ion battery systems3Q1 45689101112Q31314151617181920212223242526272829303132333435363738394041424344454647484950515253room exists for improving the theoretical gravimetric or volumet-545556575859606162636465666768697071727374757677787980818283portation
2、are large enough that cost is a critical factor, and have 84efciencies and form factors that also depend heavily on gravimet-85ric and volumetric properties 13. This review will discuss battery Co Q2rresponding author.91The majority of lithium ion batteries consist of electrodes fol-92lowing one of
3、two basic designs; thin lm battery electrodes and 93composite electrodes. Both types of batteries have been the topic98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 comparable volumetric power. Compositing electrode material128 wi
4、th metals, such as aluminum or copper, allows the binder phase129 and percolating electronic conductor to be combined into a single 157158Since electrolyte-free total electrode mass does not vary with 159microstructural effects it is relatively ineffective as a metric for 160considering structural e
5、ffects. Charge and discharge rates, or C-165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 Similar issues exist with regards to lithium ion battery electrodes.192 Most articles in the literature utilize gravimetric metrics too heav-193 ily an
6、d often do not report important electrode parameters, such as 221222popular approach to improving power in recent years 22327,48,49,7692. Nanoparticles, nanowires, and a variety of de-224signer nanostructures have been demonstrated to improve the229 230 231 232 233 234 235 236 237 238 239 240 241 24
7、2 243 244 245 246 247 248 249 250 251 252 253 with the battery data for mesoporous nanostructures. Overall,254 the consistency in results across a variety of battery systems indi-255 cates that C-rate is not an ideal metric for parameterizing electrode 305 306 307 308 309 310 311 312 313 314 315 316
8、 317 318 319 320 321 322 323 324 329 330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386the technology in a microuidic scheme could further enhance sys-387tem power. Fig. 9plots sy
9、stem energy versus cost for a traditional 388lithium-ion and a lithium ion ow battery. Calculations for the cost393 394 395 396 397 398 399 400401 402 Much has been written about vehicular batteries and the topic403 has been the subject of a number of reviews and government re-404 ports 13,21,168171
10、. Engineering ideal vehicular batteries pre- 40945kWh battery pack. At 0.25kWh kg À1the pack would weigh 410180kg, which represents about 1015%of the total mass of the 411vehicle. The volume of this battery would be on the order 75 412100L. This simple analysis does not account for an overdesig
11、n in 413energy of a factor of 2that would likely be required to meet rea-414sonable warranty guarantees. For this reason, lifetime is intimately 415associated with cost in these systems. This review will not discuss 416degradation effects, which have been the subject of several re-417views. The cost
12、 of lithium ion batteries is currently on the order 418of $0.5per W h, causing large battery packs to cost approximately 419$20,000.420No clear consensus exists with regards to designing ideal sys-421tems for vehicular 422be a critical factor 423ergy density 424the desire for rapid 425As discussed a
13、bove, 426quire sacricing 427structure for the 428on the grid. 429for utilization. For 430cussed as solution 431utilized in hybrid 432sity. For such 433from 434electrochemical 435inate these 436When 437context of the data 438that remove 439ing performance. 440based on owing 441tive approach that 442s
14、umer habits 443batteries could 444174,175. An 445tional batteries that 446such a way that 4473.4. Multifunctional 448The inherent 449that batteries be 450priate design 451the batteries are 452mechanical, optical, 453be functional 454the addition of some 455batteries with 456steel could replace 457gr
15、avimetric energy 458completely new 459both mechanical 460new form factors.4613.4.1. High-strength 462Thin lm 463modulus battery 464Attempts have been 465armor systems in a way that provides additional ballistic protec-466tion and a source of energy for portable devices 176. Batteries 467have also be
16、en integrated into mechanical composites 177. 472bipolar batteries ultimately limits the applicability of such 473batteries.474One alternative design strategy utilizes compositing approaches 475to design electrodes with high strength, high stiffness, and good 476electrochemical performance. Thermall
17、y processed batteries com-477posed of a metal electronic conductor, ceramic solid electrolyte, 478and ceramic active electrode material could provide mechanical 479properties associated with cermets 178,179while being engi-480neered appropriately for electrochemical performance. Traditional 481compo
18、site electrodes have mechanical strength and moduli on the 482order of 4MPa and 0.5GPa, respectively 180,181. High strength 483electrodes have been demonstrated to have strength and moduli 484electrode is depicted in 485and cathodes by such 486these electrodes is rela-487are opportunities to im-488t
19、ailoring geometry, or 489temperatures.490co-red with a ceramic 491or bonded together 492toughness. A sin-493as a substrate for more 494either polymer of liquid 495employed previously 496182,183. Likewise, 497could be inltrated 498design schemes would 499properties and electro-500501502research topic
20、 for over a 503many electronic devices 504of these tech-505power sources. Lithium 506electrodes are inher-507the basis for exible en-508. Stainless steel packaging 509ion batteries. Limita-510relate to the fatigue of 511robustness of composite 512many composite elec-513volume fraction of bin-514Seve
21、ral studies have 515on paper, nanotubes, 516. The major challenge 517is the need to pro-518density and exible. All 519exist, but are com-520solution to this chal-521packaging that can be 522approach is to utilize 523the exible device. An 524inexible batteries 525inhibit the defor-526remaining attach
22、ed. 527528demonstrated 196. 529This type of structure opens up new design opportunities for 530microelectronics where the battery might not inhibit graphical 531interfaces, or could enable batteries to be integrated into transpar-S. Dillon, K. Sun /Current Opinion in Solid State and Materials Scienc
23、e xxx (2012xxxxxx 7 536to the point that it does not signicantly affect optical properties 537has circumvented this. Similar strategies have been employed to 538fabricate transparent electrochemical capacitors 197. Such sys-539tems exhibit very low energy density and might only be practical 540for a
24、pplications that have very large area interfaces. However, 541the general concept of battery integration by design of multifunc-542tional batteries, will likely continue to be an ongoing topic of bat-543tery engineering research. 5444. Conclusions545A number of 546of lithium ion 547in battery system
25、 548ists. Design 549specic application 550receive more Q4551Acknowledgements552The authors are 553ment of Energy, 554SC0006509. We 555in producing Fig. 4. 556References 557Q51Coleman CJ. 5582Adie R. An account 559Soc London 1850;2.5603Friedlander A. 5614Armand M, 5625Culpin B. The lead 563(London198
26、9.5646Goodenough J. Basic 565basic energy 566USDo.5677Tarascon JM, 568batteries. Nature 5698Murphy DW, 570Science 1979;205.5719Tarascon JM, Gozdz 572Bellcores plastic 57310Hautier G, Jain A, 574lithium-ion battery 575computations. J 57611Mueller T, Hautier 577cathode materials 578computing. Chem 579
27、12Holmes RW. 580Electrochem Soc 58113Slezak L. Annual 582evaluation 583EnergyUSDo.58414Idota Y, Kubota T, 585oxide:a 58615Lu Z, MacNeil DD, 587for lithium-ion 58816Armand M, 589insertion 590electrochemical 591having electrodes 59217Nyten A, 593performance of Li 2594Commun 2005;7.59518Whittingham MS.
28、 596Science 1976;192.59719Thin-lm lithium batteries; 1984.59820Takehara Z, Ogumi Z, Uchimoto Y. Thin lm solid-state lithium batteries599prepared by consecutive vapor-phase processes. Proc Electrochem Soc 6001991;913.60624Lai W, Erdonmez CK, Marinis TF, Bjune CK, Dudney NJ, Xu F, et al. Ultrahigh-607
29、energy-density microbatteries enabled by new electrode architecture and 608micropackaging design. Adv Mater 2010;22.60925Li H, Wang Z, Chen L, Huang X. Research on advanced materials for li-ion610batteries. Adv Mater (Weinheim,Ger. 2009;21.61126Lewandowski A, Swiderska-Mocek A. Ionic liquids as elec
30、trolytes for Li-ion612batteries:an overview of electrochemical studies. J Power Source 2009;194. 61327Kim MG, Cho J. Reversible and high-capacity nanostructured electrode614materials for Li-ion batteries. Adv Funct Mater 2009;19.61528Cheng F, Tao Z, Liang J, Chen J. Template-directed materials for r
31、echargeable616lithium-ion batteries. Chem Mater 2008;20.61729Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J618Power Source 2007;164.61930Ohzuku T, Brodd RJ. An overview of positive-electrode materials for advanced620lithium-ion batteries. J Power Source 2007;174.621K,
32、 Jumas J-C, Tarascon J-M.622of pure metals as negative 6232007;17.624bulk-silicon-based insertion625Source 2007;163.626in liquid and polymer lithium-627628lithium-ion batteries. J Power629630RE. Review of models for631ion batteries. J Power Sources 632633al. Cathode materials modied634Electrochim Ac
33、ta 2006;51.635et al. Surface modications of636Solid State Sci. 2006;8.637mechanisms in lithium-ion638639KC, Besenhard JO, et al. Ageing640Source 2005;147:111.641N, Hackney SA. Advances in642lithium-ion batteries. J Mater 643644materials for lithium ion645State Electrochem 2004;8. 646and portable pow
34、er source6472004;136.648for lithium ion batteries. J649650lithium-ion batteries. J Power651652cathode materials for lithium-653654and lithium-ion batteries. J655656on electrochemical657ion batteries. Electrochim 658659CR. Nanoscale materials for660661anode for lithium-ion662663RE. Mathematical model
35、ing of664Sources 2002;110.665ion batteries. Mater Sci Eng R66666710years and the future. J Power668669materials. Electrochim Acta670671Coluccia M. Advanced in situ672electrodes in lithium-ion 673674CD. Thin-lm lithium and675676capability of the graphite677678polymer electrolytes for679680rechargeabl
36、e batteries.681682and side reactions in683lithium-ion batteries. J Electrochem Soc 1998;145.68460Koksbang R, Barker J, Shi H, Saiedi MY. Cathode materials for lithium rocking685chair batteries. Solid State Ion 1996;84.68661Megahed S, Ebner W. Lithium-ion battery for electronic applications. J Power6
37、87Source 1995;54.8S. Dillon, K. Sun /Current Opinion in Solid State and Materials Science xxx (2012 xxxxxx 69264Sun L, Karanjgaokar N, Sun K, Chasiotis I, Carter WC, Dillon S. High-strength693all-solid lithium ion electrodes based on Li4Ti5O12. J Power Source 2011;196. 69465Darling R, Newman J. Mode
38、ling a porous intercalation electrode with two695characteristic particle sizes. J Electrochem Soc 1997;144.69666Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and697discharge of the lithium/polymer/insertioncell. J Electrochem Soc 1993;140. 69867Doyle M, Newman J. The use of mathemat
39、ical modeling in the design of699lithium/polymerbattery systems. Electrochim Acta 1995;40.70068Doyle M, Newman J. Analysis of capacity-rate data for lithium batteries using701simplied models of the discharge process. J Appl Electrochem 1997;27. 70269Newman J, Thomas KE, Hafezi H, Wheeler DR. Modelin
40、g of lithium-ion703batteries. J Power Source 2003;119121.70470Rong P, Pedram M. An analytical model for predicting the remaining battery705capacity of lithium-ion batteries. In:Proceedings of the conference on design, 706automation and test in Europe, vol. 1; 2003. 70771Arora P, Doyle M, 708mechanis
41、ms in 709reaction on the 71072Garcia RE, Chiang 711modeling and 7122005;152.71373Garcia RE, Chiang 714complex battery 71574Gogotsi Y, Simon 716storage. Science 71775Shim J, Striebel 718irreversible 719Power Source 72076Zhang H, Yu X, 721and -discharge 72277Lee KT, Cho J. Roles 723ion batteries. Nano
42、 72478Shukla AK, Kumar 7252008;94.72679Nam KT, Kim D-W, 727M, Belcher AM. 728lithium ion battery 729in CA145:127460.73080Reddy MA, 731intercalation into 732Lett 2007;10.73381Park DH, Lee S-H, 734hydrothermal 735effect of cation 736nanowires. Adv 73782Meethong N, 738miscibility gap in 7392007;10.7408
43、3Mai L, Hu B, Chen 741nanobelts with 742Mater 2007;19.74384Li Y, Kunitake T, 744Ultrathin V 2O 5745Mater 2007;19.74685Hu Y-S, Guo Y-G, 747electrode 748interconnect. Adv 74986Wang Y, 750electrodes for 75187Holzapfel M, Buqa 752sized 753Chem Commun 75488Arico AS, Bruce P, 755materials for 7562005;4.75
44、789Huang H, Yin S-C, 758high capacity, fast 759batteries. Adv 76090Poizot P, Laruelle S, 761metal oxides as 7622000;407.76391Besenhard JO, Yang 764chance in 76592Yang J, Winter M, 766anodes for 76793Kang B, Ceder G. 768Nature 2009;458.76994Bak S-M, Nam K-W, Lee C-W, Kim K-H, Jung H-C, Yang X-Q, Kim
45、K-B. Spinel770LiMn 2O 4/reducedgraphene oxide hybrid for high rate lithium ion batteries. J 771Mater Chem 2011;21.77295Chi LH, Dinh NN, Brutti S, Scrosati B. Synthesis, characterization and773electrochemical properties of 4.8V LiNi0.5Mn1.5O cathode material in 77897Laheaar A, Kurig H, Janes A, Lust
46、E. LiPF6based ethylene carbonate,779Äìdimethylcarbonate electrolyte for high power density electrical double 780layer capacitor. Electrochim Acta 2009;54.78198Lanz M, Kormann C, Steininger H, Heil G, Haas O, Novak P. Large-782agglomerate-size lithium manganese oxide spinel with high rate c
47、apability 783for lithium-ion batteries. J Electrochem Soc 2000;147.78499Li J, Wan W, Zhou H, Li J, Xu D. Hydrothermal synthesis of TiO 2(Bnanowires785with ultrahigh surface area and their fast charging and discharging properties 786in Li-ion batteries. Chem Commun 2011;47.787100Naghash AR, Lee JY. P
48、reparation of spinel lithium manganese oxide by788aqueous co-precipitation. J Power Source 2000;85.789101Nakahara K, Nakajima R, Matsushima T, Majima H. Preparation of particulate790Li 4Ti 5O 12having excellent characteristics as an electrode active material for 791power storage cells. J Power Sourc
49、e 2003;117.792102Sun K, Dillon SJ. A mechanism for the improved rate capability of cathodes by793Commun 2011;13.794LB, et al. One-step synthesis of795self-assembly for high power 796797DG. Porous LiNi0.75Co0.25O 2798process as cathode material for 799800J. Electrochemical impedance801intercalation i
50、nto Li 4Ti 5O 12. Proc 802803JB. Lithium cobalt804material for batteries of high 805806JB. Lithium insertion into807808as cathodes for lithium809810JB. Phospho-olivines as positive-811batteries. J Electrochem Soc 812813H, Mitate T, Nakajima S, et al.814carbon as a negative 815816P, Chen L. The struc
51、ture and817as a novel Li-battery cathode 818819B. A theoretical study of820821J, Swoyer J, Huang H, et al.822of the structure and 823with the monoclinic 824825SN, Genkina EA, Ivanov-Shits826lithium metal phosphate 827synthesis, structure and 8281990;38.829Tao Z, Chen J. Porous Li2FeSiO4/830lithium-i
52、on batteries. J Power 831832A. Microwave-solvothermal833=Mn and Fe cathodes for 8348352FeSiO 4as cathode material836Lett 2009;12.837nano-painting:application to838Electrochem Soc 2003;2003 839840conductive phospho-841Mater 2002;1.842P, Djenizian T. A novel843nanotube and iron oxide 844J Mater Chem 2
53、010;20.845characterization846on silicon substrates as anode 847Electrochem Commun 848849A. Laser transferable polymer-850rechargeable lithium-ion 8512006;9.852K. Preparation of micro-dot853micro-batteries. Electrochim 854855124Pique A, Arnold CB, Kim H, Ollinger M, Sutto TE. Rapid prototyping of856m
54、icropower sources by laser direct-write. Appl Phys A:Mater Sci Process 8572004;79.858125Hess M, Lebraud E, Levasseur A. Graphite multilayer thin lms:a new anode859material for Li-ion microbatteries synthesis and characterization. J Power S. Dillon, K. Sun /Current Opinion in Solid State and Material
55、s Science xxx (2012xxxxxx9 864127Julien C, Yebka B, Guesdon JP. Solid-state lithium microbatteries. Ionics8651995;1.866128Jones SD, Akridge JR, Shokoohi FK. Thin lm rechargeable Li batteries. Solid867State Ionics 1994;69.868129Julien C, Balkanski M. Thin-lm growth and structure for solid-state batte
56、ries.869Appl Surf Sci 1991;4849.870130Cheah SK, Perre E, Rooth M, Fondell M, Haarsta A, Nyholm L, et al. Self-871supported three-dimensional nanoelectrodes for microbattery applications. 872Nano Lett 2009;9.873131Min H-S, Park BY, Taherabadi L, Wang C, Yeh Y, Zaouk R, et al. Fabrication and874proper
57、ties of a carbon/polypyrrolethree-dimensional microbattery. J Power 875Source 2008;178:1111.876132Chamran F, Yeh Y, Min H-S, Dunn B, Kim C-J. Fabrication of high-aspect-ratio877electrode arrays for three-dimensional microbatteries. J Microelectromech 878Syst 2007;16.879133Golodnitsky D, 880et al. Advanced 8812006;153. 882134Golodnitsky D, 883Progress in 8842006;177.885135Nathan M, 886Three-dimensional 887Microelectromech 888136Hart RW, White 889Commun 2003;5.890
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 導(dǎo)管堵塞的預(yù)防和處理
- 幼兒園迎國慶主題活動
- 提前雙11活動特別策劃
- 程序員轉(zhuǎn)正申請書范文
- 全膝關(guān)節(jié)置換術(shù)的個案護(hù)理
- 心肌梗死溶栓的護(hù)理
- 2025承包物業(yè)合同范本
- 2025內(nèi)部承包合同模板
- 電氣工程師的日常工作
- 房產(chǎn)行業(yè)話務(wù)員工作總結(jié)
- (3.10)-心悸急診醫(yī)學(xué)急診醫(yī)學(xué)
- 不動產(chǎn)登記操作規(guī)范解讀
- 蓋洛普Q12解讀和實施完整版
- 2023年Web前端技術(shù)試題
- GB/T 20840.8-2007互感器第8部分:電子式電流互感器
- GB/T 14864-2013實心聚乙烯絕緣柔軟射頻電纜
- 信息學(xué)奧賽-計算機(jī)基礎(chǔ)知識(完整版)資料
- 發(fā)煙硫酸(CAS:8014-95-7)理化性質(zhì)及危險特性表
- 數(shù)字信號處理(課件)
- 公路自然災(zāi)害防治對策課件
- 耳鳴中醫(yī)臨床路徑
評論
0/150
提交評論