土木工程畢業(yè)設(shè)計(jì)外文翻譯1_第1頁(yè)
土木工程畢業(yè)設(shè)計(jì)外文翻譯1_第2頁(yè)
土木工程畢業(yè)設(shè)計(jì)外文翻譯1_第3頁(yè)
土木工程畢業(yè)設(shè)計(jì)外文翻譯1_第4頁(yè)
土木工程畢業(yè)設(shè)計(jì)外文翻譯1_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、DESIGN AND EXECUTION OF GROUND INVESTIGATION FOR EARTHWORKS PAUL QUIGLEY, FGSIrish Geotechnical Services LtdABSTRACTThe design and execution of ground investigation works for earthwork projects has become increasingly important as the availability of suitable disposal areas becomes limited and costs

2、 of importing engineering fill increase. An outline of ground investigation methods which can augment traditional investigation methods particularly for glacial till / boulder clay soils is presented. The issue of geotechnical certification is raised and recommendations outlined on its merits for in

3、corporation with ground investigations and earthworks.1. INTRODUCTIONThe investigation and re-use evaluation of many Irish boulder clay soils presents difficulties for both the geotechnical engineer and the road design engineer. These glacial till or boulder clay soils are mainly of low plasticity a

4、nd have particle sizes ranging from clay to boulders. Most of our boulder clay soils contain varying proportions of sand, gravel, cobbles and boulders in a clay or silt matrix. The amount of fines governs their behaviour and the silt content makes it very weather susceptible.Moisture contents can be

5、 highly variable ranging from as low as 7% for the hard grey black Dublin boulder clay up to 20-25% for Midland, South-West and North-West light grey boulder clay deposits. The ability of boulder clay soils to take-in free water is well established and poor planning of earthworks often amplifies thi

6、s.The fine soil constituents are generally sensitive to small increases in moisture content which often lead to loss in strength and render the soils unsuitable for re-use as engineering fill. Many of our boulder clay soils (especially those with intermediate type silts and fine sand matrix) have be

7、en rejected at the selection stage, but good planning shows that they can in fact fulfil specification requirements in terms of compaction and strength.The selection process should aim to maximise the use of locally available soils and with careful evaluation it is possible to use or incorporate poo

8、r or marginal soils within fill areas and embankments. Fill material needs to be placed at a moisture content such that it is neither too wet to be stable and trafficable or too dry to be properly compacted.High moisture content / low strength boulder clay soils can be suitable for use as fill in lo

9、w height embankments (i.e. 2 to ) but not suitable for trafficking by earthwork plant without using a geotextile separator and granular fill capping layer. Hence, it is vital that the earthworks contractor fully understands the handling properties of the soils, as for many projects this is effective

10、ly governed by the trafficability of earthmoving equipment.2. TRADITIONAL GROUND INVESTIGATION METHODS For road projects, a principal aim of the ground investigation is to classify the suitability of the soils in accordance with Table from Series 600 of the NRA Specification for Road Works (SRW), Ma

11、rch 2000. The majority of current ground investigations for road works includes a combination of the following to give the required geotechnical data:§ Trial pits§ Cable percussion boreholes§ Dynamic probing§ Rotary core drilling§ In-situ testing (SPT, variable head permeabi

12、lity tests, geophysical etc.)§ Laboratory testingThe importance of phasing the fieldwork operations cannot be overstressed, particularly when assessing soil suitability from deep cut areas. Cable percussion boreholes are normally sunk to a desired depth or refusal with disturbed and undisturbed

13、 samples recovered at intervals or change of strata.In many instances, cable percussion boring is unable to penetrate through very stiff, hard boulder clay soils due to cobble, boulder obstructions. Sample disturbance in boreholes should be prevented and loss of fines is common, invariably this lead

14、s to inaccurate classification.Trial pits are considered more appropriate for recovering appropriate size samples and for observing the proportion of clasts to matrix and sizes of cobbles, boulders. Detailed and accurate field descriptions are therefore vital for cut areas and trial pits provide an

15、opportunity to examine the soils on a larger scale than boreholes. Trial pits also provide an insight on trench stability and to observe water ingress and its effects.A suitably experienced geotechnical engineer or engineering geologist should supervise the trial pitting works and recovery of sample

16、s. The characteristics of the soils during trial pit excavation should be closely observed as this provides information on soil sensitivity, especially if water from granular zones migrates into the fine matrix material. Very often, the condition of soil on the sides of an excavation provides a more

17、 accurate assessment of its in-situ condition.3. SOIL CLASSIFICATIONSoil description and classification should be undertaken in accordance with BS 5930 (1999) and tested in accordance with BS 1377 (1990). The engineering description of a soil is based on its particle size grading, supplemented by pl

18、asticity for fine soils. For many of our glacial till, boulder clay soils (i.e. mixed soils) difficulties arise with descriptions and assessing engineering performance tests.As outlined previously, Irish boulder clays usually comprise highly variable proportions of sands, gravels and cobbles in a si

19、lt or clay matrix. Low plasticity soils with fines contents of around 10 to 15% often present the most difficulties. BS 5930 (1999) now recognises these difficulties in describing mixed soils the fine soil constituents which govern the engineering behaviour now takes priority over particle size.A ke

20、y parameter (which is often underestimated) in classifying and understanding these soils is permeability (K). Inspection of the particle size gradings will indicate magnitude of permeability. Where possible, triaxial cell tests should be carried out on either undisturbed samples (U100s) or good qual

21、ity core samples to evaluate the drainage characteristics of the soils accurately.Low plasticity boulder clay soils of intermediate permeability (i.e. K of the order of 10-5 to 10-7 m/s) can often be conditioned by drainage measures. This usually entails the installation of perimeter drains and sump

22、s at cut areas or borrow pits so as to reduce the moisture content. Hence, with small reduction in moisture content, difficult glacial till soils can become suitable as engineering fill.4. ENGINEERING PERFORMANCE TESTING OF SOILSLaboratory testing is very much dictated by the proposed end-use for th

23、e soils. The engineering parameters set out in Table 6.1 pf the NRA SRW include a combination of the following:§ Moisture content§ Particle size grading§ Plastic Limit§ CBR§ Compaction (relating to optimum MC)§ Remoulded undrained shear strengthA number of key factors s

24、hould be borne in mind when scheduling laboratory testing:§ Compaction / CBR / MCV tests are carried out on < 20mm size material.§ Moisture content values should relate to < 20mm size material to provide a valid comparison.§ Pore pressures are not taken into account during compa

25、ction and may vary considerably between laboratory and field.§ Preparation methods for soil testing must be clearly stipulated and agreed with the designated laboratory.Great care must be taken when determining moisture content of boulder clay soils. Ideally, the moisture content should be rela

26、ted to the particle size and have a corresponding grading analysis for direct comparison, although this is not always practical.In the majority of cases, the MCV when used with compaction data is considered to offer the best method of establishing (and checking) the suitability characteristics of a

27、boulder clay soil. MCV testing during trial pitting is strongly recommended as it provides a rapid assessment of the soil suitability directly after excavation. MCV calibration can then be carried out in the laboratory at various moisture content increments. Sample disturbance can occur during trans

28、portation to the laboratory and this can have a significant impact on the resultant MCVs.IGSL has found large discrepancies when performing MCVs in the field on low plasticity boulder clays with those carried out later in the laboratory (2 to 7 days). Many of the aforementioned low plasticity boulde

29、r clay soils exhibit time dependant behaviour with significantly different MCVs recorded at a later date increased values can be due to the drainage of the material following sampling, transportation and storage while dilatancy and migration of water from granular lenses can lead to deterioration an

30、d lower values.This type of information is important to both the designer and earthworks contractor as it provides an opportunity to understand the properties of the soils when tested as outlined above. It can also illustrate the advantages of pre-draining in some instances. With mixed soils, face e

31、xcavation may be necessary to accelerate drainage works.CBR testing of boulder clay soils also needs careful consideration, mainly with the preparation method employed. Design engineers need to be aware of this, as it can have an order of magnitude difference in results. Static compaction of boulder

32、 clay soils is advised as compaction with the 2.5 or rammer often leads to high excess pore pressures being generated hence very low CBR values can result. Also, curing of compacted boulder clay samples is important as this allows excess pore water pressures to dissipate.5. ENGINEERING CLASSIFICATIO

33、N OF SOILSIn accordance with the NRA SRW, general cohesive fill is categorised in Table 6.1 as follows:§ 2A Wet cohesive§ 2B Dry cohesive§ 2C Stony cohesive§ 2D Silty cohesiveThe material properties required for acceptability are given and the design engineer then determines the

34、upper and lower bound limits on the basis of the laboratory classification and engineering performance tests. Irish boulder clay soils are predominantly Class 2C.Clause 612 of the SRW sets out compaction methods. Two procedures are available:§ Method Compaction§ End-Product CompactionEnd p

35、roduct compaction is considered more practical, especially when good compaction control data becomes available during the early stages of an earthworks contract. A minimum Target Dry Density (TDD) is considered very useful for the contractor to work with as a means of checking compaction quality. On

36、ce the material has been approved and meets the acceptability limits, then in-situ density can be measured, preferably by nuclear gauge or sand replacement tests where the stone content is low.As placing and compaction of the fill progresses, the in-situ TDD can be checked and non-conforming areas q

37、uickly recognised and corrective action taken. This process requires the design engineer to review the field densities with the laboratory compaction plots and evaluate actual with theoretical densities.6. SUPPLEMENTARY GROUND INVESTIGATION METHODS FOR EARTHWORKSThe more traditional methods and proc

38、edures have been outlined in Section 2. The following are examples of methods which are believed to enhance ground investigation works for road projects:§ Phasing the ground investigation works, particularly the laboratory testing§ Excavation & sampling in deep trial pits§ Large d

39、iameter high quality rotary core drilling using air-mist or polymer gel techniques§ Small-scale compaction trials on potentially suitable cut material6.1 PHASINGPhasing ground investigation works for many large projects has been advocated for many years this is particularly true for road projec

40、ts where significant amounts of geotechnical data becomes available over a short period. On the majority of large ground investigation projects no period is left to digest or review the preliminary findings and re-appraise the suitability of the methods.With regard to soil laboratory testing, large

41、testing schedules are often prepared with no real consideration given to their end use. In many cases, the schedule is prepared by a junior engineer while the senior design engineer who will probably design the earthworks will have no real involvement.It is highlighted that the engineering performan

42、ce tests are expensive and of long duration (e.g. 5 point compaction with CBR & MCV at each point takes in excess of two weeks). When classification tests (moisture contents, particle size analysis and Atterberg Limits) are completed then a more incisive evaluation can be carried out on the data

43、 and the engineering performance tests scheduled. If MCVs are performed during trial pitting then a good assessment of the soil suitability can be immediately obtained.6.2 DEEP TRIAL PITSThe excavation of deep trial pits is often perceived as cumbersome and difficult and therefore not considered app

44、ropriate by design engineers. Excavation of deep trial pits in boulder clay soils to depths of up to 12m is feasible using benching techniques and sump pumping of groundwater.In recent years, IGSL has undertaken such deep trial pits on several large road ground investigation projects. The data obtai

45、ned from these has certainly enhanced the geotechnical data and provided a better understanding of the bulk properties of the soils.It is recommended that this work be carried out following completion of the cable percussion boreholes and rotary core drill holes. The groundwater regime within the cu

46、t area will play an important role in governing the feasibility of excavating deep trial pits. The installation of standpipes and piezometers will greatly assist the understanding of the groundwater conditions, hence the purpose of undertaking this work late on in the ground investigation programme.

47、Large representative samples can be obtained (using trench box) and in-situ shear strength measured on block samples. The stability of the pit sidewalls and groundwater conditions can also be established and compared with levels in nearby borehole standpipes or piezometers. Over a prominent cut area

48、 of say 500m, three deep trial pits can prove invaluable and the spoil material also used to carry out small-scale compaction trials.From a value engineering perspective, the cost of excavating and reinstating these excavations can be easily recovered. A provisional sum can be allocated in the groun

49、d investigation and used for this work.6.3 HIGH QUALITY LARGE DIAMETER ROTARY CORE DRILLINGThis system entails the use of large diameter rotary core drilling techniques using air mist or polymer gel flush. Triple tube core drilling is carried out through the overburden soils with the recovered mater

50、ial held in a plastic core liner.Core recovery in low plasticity boulder clay has been shown to be extremely good (typically in excess of 90%). The high core recovery permits detailed engineering geological logging and provision of samples for laboratory testing.In drumlin areas, such as those aroun

51、d Cavan and Monaghan, IGSL has found the use of large diameter polymer gel rotary core drilling to be very successful in recovering very stiff / hard boulder clay soils for deep road cut areas (where cable percussion boreholes and trial pits have failed to penetrate). In-situ testing (vanes, SPTs et

52、c) can also be carried out within the drillhole to establish strength and bearing capacity of discrete horizons.Large diameter rotary drilling costs using the aforementioned systems are typically 50 to 60% greater than conventional HQ core size, but again from a value engineering aspect can prove mu

53、ch more worthwhile due to the quality of geotechnical information obtained.6.4 SMALL-SCALE COMPACTION TRIALSThe undertaking of small-scale compaction trials during the ground investigation programme is strongly advised, particularly where marginally suitable soils are present in prominent cut areas.

54、 In addition to validating the laboratory test data, they enable more realistic planning of the earthworks and can provide considerable cost savings.The compaction trial can provide the following:§ Achievable field density, remoulded shear strength and CBR§ Establishing optimum layer thick

55、ness and number of roller passes§ Response of soil during compaction (static v dynamic)§ Monitor trafficability & degree of rutting.A typical size test pad would be approximately 20 x 10m in plan area and up to in thickness. The selected area should be close to the cut area or borrow p

56、it and have adequate room for stockpiling of material. Earthwork plant would normally entail a tracked excavator (CAT 320 or equivalent), 25t dumptruck, D6 dozer and either a towed or self-propelled roller.In-situ density measurement on the compacted fill by nuclear gauge method is recommended as th

57、is facilitates rapid measurement of moisture contents, dry and bulk densities. It also enables a large suite of data to be generated from the compacted fill and to assess the relationship between degree of compaction, layer thickness and number of roller passes. Both disturbed and undisturbed (U100)

58、 samples of the compacted fill can be taken for laboratory testing and validation checks made with the field data (particularly moisture contents). IGSLs experience is that with good planning a small-scale compaction trial takes two working days to complete.7. SUPERVISION OF GROUND INVESTIGATION PRO

59、JECTS Close interaction and mutual respect between the ground investigation contractor and the consulting engineer is considered vital to the success of large road investigation projects. A senior geotechnical engineer from each of the aforementioned parties should liase closely so that the direction and scope of the investigation can be changed to reflect the stratigraphy and ground conditions encountered.The nature of large ground investigation projects means that there must be good communication and flexibility in a

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論