版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1為虛數(shù)單位,則的虛部為( )ABCD2的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角( )ABCD3點(diǎn)在所在的平面內(nèi),且,則( )ABCD4已知函數(shù)滿(mǎn)足=1,則等于( )A-BC-D5要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)( )A伸長(zhǎng)到原來(lái)的2倍(
2、縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度B伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個(gè)單位長(zhǎng)度C縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長(zhǎng)度D縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度6已知為等腰直角三角形,為所在平面內(nèi)一點(diǎn),且,則( )ABCD7若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限8設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)的直線交橢圓于,兩點(diǎn),且,則橢圓的離心率為( )ABCD9設(shè)a=log73,c=30.7,則a,b,c的大小關(guān)系是()ABCD10已知函數(shù),若,則a的取值范圍為( )A
3、BCD11設(shè)函數(shù),當(dāng)時(shí),則( )ABC1D12對(duì)于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,.下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計(jì)表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是( )發(fā)芽所需天數(shù)1234567種子數(shù)43352210A2B3C3.5D4二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的圖象在處的切線方程為_(kāi)14如圖,已知扇形的半徑為1,面積為,則_.15若變量,滿(mǎn)足約束條件則的最大值是_.16設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)如圖,平面四邊形中,是上的一
4、點(diǎn),是的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.18(12分)已知拋物線,直線與交于,兩點(diǎn),且.(1)求的值;(2)如圖,過(guò)原點(diǎn)的直線與拋物線交于點(diǎn),與直線交于點(diǎn),過(guò)點(diǎn)作軸的垂線交拋物線于點(diǎn),證明:直線過(guò)定點(diǎn).19(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).20(12分)選修45;不等式選講已知函數(shù)(1)若的解集非空
5、,求實(shí)數(shù)的取值范圍;(2)若正數(shù)滿(mǎn)足,為(1)中m可取到的最大值,求證:21(12分)設(shè)數(shù)陣,其中、設(shè),其中,且定義變換為“對(duì)于數(shù)陣的每一行,若其中有或,則將這一行中每個(gè)數(shù)都乘以;若其中沒(méi)有且沒(méi)有,則這一行中所有數(shù)均保持不變”(、)表示“將經(jīng)過(guò)變換得到,再將經(jīng)過(guò)變換得到、 ,以此類(lèi)推,最后將經(jīng)過(guò)變換得到”,記數(shù)陣中四個(gè)數(shù)的和為(1)若,寫(xiě)出經(jīng)過(guò)變換后得到的數(shù)陣;(2)若,求的值;(3)對(duì)任意確定的一個(gè)數(shù)陣,證明:的所有可能取值的和不超過(guò)22(10分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn),的直線的距離為()求橢圓的離心率;()如圖,是圓的一條直徑,若橢圓經(jīng)過(guò),兩點(diǎn),求橢圓的方程參考答案一、選擇
6、題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】利用復(fù)數(shù)的運(yùn)算法則計(jì)算即可.【詳解】,故虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯(cuò)題.2C【解析】由正弦定理化邊為角,由三角函數(shù)恒等變換可得【詳解】,由正弦定理可得,三角形中,故選:C【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵3D【解析】確定點(diǎn)為外心,代入化簡(jiǎn)得到,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,又,所以因?yàn)?,?lián)立方程可得,因?yàn)?,所以,即故選:【點(diǎn)睛】本題考查了
7、向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.4C【解析】設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進(jìn)而可得.【詳解】解:設(shè)的最小正周期為,因?yàn)?,所以,所以,所以,又,所以?dāng)時(shí),因?yàn)椋淼?,因?yàn)?,則所以.故選:C.【點(diǎn)睛】本題考查三角形函數(shù)的周期性和對(duì)稱(chēng)性,考查學(xué)生分析能力和計(jì)算能力,是一道難度較大的題目.5B【解析】分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到 再將得到的圖象向左平移個(gè)單位長(zhǎng)度得到 故選B點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵6D【解析】以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)
8、合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.7A【解析】將 整理成的形式,得到復(fù)數(shù)所對(duì)應(yīng)的的點(diǎn),從而可選出所在象限.【詳解】解:,所以所對(duì)應(yīng)的點(diǎn)為在第一象限.故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對(duì)應(yīng)的坐標(biāo).易錯(cuò)點(diǎn)是誤把 當(dāng)成進(jìn)行計(jì)算.8C【解析】根據(jù)表示出線段長(zhǎng)度,由勾股定理,解出每條線段的長(zhǎng)度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在
9、中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過(guò)幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.9D【解析】,得解【詳解】,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見(jiàn)的方法10C【解析】求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),是增函數(shù),由得,解得故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解11A【解析】由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性
10、質(zhì)求得參數(shù)值【詳解】,時(shí),由題意,故選:A【點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵12C【解析】根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點(diǎn)睛】本題考查中位數(shù)的計(jì)算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用導(dǎo)數(shù)的幾何意義,對(duì)求導(dǎo)后在計(jì)算在處導(dǎo)函數(shù)的值,再利用點(diǎn)斜式列出方程化簡(jiǎn)即可.【詳解】,則切線的斜率為.又,所以函數(shù)的圖象在處的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)的幾何意義求解函數(shù)在某點(diǎn)處的切線方程問(wèn)題,需要注意求導(dǎo)法則與計(jì)算,屬于基礎(chǔ)題
11、.14【解析】根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角, 則,所以在等腰三角形中,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.159【解析】做出滿(mǎn)足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標(biāo)函數(shù)過(guò)點(diǎn)時(shí)取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.161【解析】根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函
12、數(shù),所以,又因?yàn)楫?dāng)時(shí),所以,所以實(shí)數(shù)的值為1.故答案為:1【點(diǎn)睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)見(jiàn)解析;(2)【解析】(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點(diǎn),所以,從而可證得結(jié)論;(2)由于在中,而平面平面,所以點(diǎn)在平面的投影恰好為的中點(diǎn),所以如圖建立空間直角坐標(biāo)系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設(shè),因?yàn)?所以在中,則,又,所以,由,所以為等邊三角形,又是的中點(diǎn),所以,又平面,則有平面,而平面,故平
13、面平面.(2)解法一:在中,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,以為坐標(biāo)原點(diǎn),方向?yàn)檩S方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量,由得取,則設(shè)直線與平面所成角大小為,則,故直線與平面所成角的正弦值為. 解法二:在中,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,過(guò)作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,所以,設(shè)到平面的距離為,由,即,即,可得,設(shè)直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點(diǎn)睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學(xué)生的轉(zhuǎn)化思想和計(jì)算能力,屬于中檔題.18(1);(2)見(jiàn)解析【解析】(
14、1)聯(lián)立直線和拋物線,消去可得,求出,再代入弦長(zhǎng)公式計(jì)算即可.(2)由(1)可得,設(shè),計(jì)算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計(jì)算直線的斜率,求出直線的方程,化簡(jiǎn)可得到恒過(guò)的定點(diǎn).【詳解】(1)由,消去可得,設(shè),則,.,解得或(舍去),.(2)證明:由(1)可得,設(shè),所以直線的方程為,當(dāng)時(shí),則,代入拋物線方程,可得,所以直線的斜率,直線的方程為,整理可得,故直線過(guò)定點(diǎn).【點(diǎn)睛】本題第一問(wèn)考查直線與拋物線相交的弦長(zhǎng)問(wèn)題,需熟記弦長(zhǎng)公式.第二問(wèn)考查直線方程和直線恒過(guò)定點(diǎn)問(wèn)題,需有較強(qiáng)的計(jì)算能力,屬于難題.19(1)的普通方程為的直角坐標(biāo)方程為 (2)(-1,0)或(2,3
15、)【解析】(1)對(duì)直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對(duì)整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點(diǎn)P的坐標(biāo)為,由題可得:,利用兩點(diǎn)距離公式列方程即可求解。【詳解】解:(1)由消去參數(shù),得即直線的普通方程為 因?yàn)橛?,曲線的直角坐標(biāo)方程為 (2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)P到上的點(diǎn)的最短距離為|PQ|即,整理得,解得 所以點(diǎn)P的坐標(biāo)為(-1,0)或(2,3)【點(diǎn)睛】本題主要考查了參數(shù)方程化為普通方程及極坐標(biāo)方程化為直角坐標(biāo)方程,還考查了轉(zhuǎn)化思想及兩點(diǎn)距離公式,考查了方程思想及計(jì)算
16、能力,屬于中檔題。20 (1);(2)見(jiàn)解析.【解析】試題分析:(1)討論三種情況去絕對(duì)值符號(hào),可得所以,由此得,解得;(2)利用分析法,由(1)知,所以,因?yàn)?,要證,只需證,即證,只需證 即可得結(jié)果.試題解析:(1)去絕對(duì)值符號(hào),可得所以,所以,解得,所以實(shí)數(shù)的取值范圍為(2)由(1)知,所以因?yàn)?,所以要證,只需證,即證,即證.因?yàn)?,所以只需證,因?yàn)?,成立,所以解法二:x2+y2=2,x、yR+,x+y2xy 設(shè):證明:x+y-2xy= =令, 原式= = = = 當(dāng)時(shí), 21(1);(2);(3)見(jiàn)解析.【解析】(1)由,能求出經(jīng)過(guò)變換后得到的數(shù)陣;(2)由,求出數(shù)陣經(jīng)過(guò)變化后的矩陣,進(jìn)而
17、可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過(guò)【詳解】(1),經(jīng)過(guò)變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個(gè),經(jīng)過(guò)變換后第一行均變?yōu)?、;含有且不含的子集共個(gè),經(jīng)過(guò)變換后第一行均變?yōu)?、;同時(shí)含有和的子集共個(gè),經(jīng)過(guò)變換后第一行仍為、;不含也不含的子集共個(gè),經(jīng)過(guò)變換后第一行仍為、所以經(jīng)過(guò)變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個(gè),經(jīng)過(guò)變換后第一行均變?yōu)?、;不含有的子集共個(gè),經(jīng)過(guò)變換后第一行仍為、所以經(jīng)過(guò)變換后所有的第一行的所有數(shù)的和為同理,經(jīng)過(guò)變換后所有的第二行的所有數(shù)的和為所以的所有可能取值的和為,又因?yàn)椤?,所以的所有可能取值的和不超過(guò)【點(diǎn)睛】本題考查數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云制造服務(wù)行業(yè)營(yíng)銷(xiāo)策略方案
- 廣告材料制作行業(yè)相關(guān)項(xiàng)目經(jīng)營(yíng)管理報(bào)告
- 家用電動(dòng)打蠟機(jī)產(chǎn)業(yè)鏈招商引資的調(diào)研報(bào)告
- 為第人創(chuàng)建設(shè)計(jì)開(kāi)發(fā)和維護(hù)網(wǎng)站行業(yè)營(yíng)銷(xiāo)策略方案
- 發(fā)行預(yù)付費(fèi)代金券行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 心理治療服務(wù)行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 冷鏈智能包裝行業(yè)相關(guān)項(xiàng)目經(jīng)營(yíng)管理報(bào)告
- 人工智能在醫(yī)療行業(yè)營(yíng)銷(xiāo)策略方案
- 電競(jìng)產(chǎn)業(yè)全解析-洞察電子競(jìng)技的未來(lái)趨勢(shì)
- 定制生產(chǎn)假發(fā)套行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 基督教追悼會(huì)悼詞 一個(gè)母親去世追悼詞3篇
- Creo-7.0基礎(chǔ)教程-配套課件
- 幼兒園玩具安全教育(兒童版)
- 網(wǎng)課-文化之旅答案
- 馬克思主義經(jīng)典著作選讀智慧樹(shù)知到課后章節(jié)答案2023年下四川大學(xué)
- 小學(xué)數(shù)學(xué)《倍的認(rèn)識(shí)》教案基于學(xué)科核心素養(yǎng)的教學(xué)設(shè)計(jì)及教學(xué)反思
- 高中生如何交往人際關(guān)系主題班會(huì)課件
- GB/T 20638-2023步進(jìn)電動(dòng)機(jī)通用技術(shù)規(guī)范
- 四年級(jí)作文-記一次活動(dòng)之有趣的搶凳子游戲(課堂PPT)
- 國(guó)企領(lǐng)導(dǎo)人員管理暫行規(guī)定
- 高校學(xué)生干部培訓(xùn)會(huì)新聞稿
評(píng)論
0/150
提交評(píng)論