2022屆北京市十高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆北京市十高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆北京市十高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆北京市十高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆北京市十高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請(qǐng)按要求用筆。3請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1定義,已知函數(shù),則函數(shù)的最小值為( )ABCD2若,則( )ABCD3某四棱錐的三視圖如圖所示,則該四棱錐的表面積

2、為( )A8BCD4復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限5記遞增數(shù)列的前項(xiàng)和為.若,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則( )ABCD6已知實(shí)數(shù)滿足,則的最小值為( )ABCD7如圖在直角坐標(biāo)系中,過(guò)原點(diǎn)作曲線的切線,切點(diǎn)為,過(guò)點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為( )ABCD8已知角的終邊經(jīng)過(guò)點(diǎn)P(),則sin()=ABCD9已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為( )ABCD10已知雙曲線的一條漸近線方程是,則雙曲線的離心率為( )ABCD

3、11某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對(duì)比該??忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考情況,得到如圖柱狀圖: 則下列結(jié)論正確的是( ).A與2016年相比,2019年不上線的人數(shù)有所增加B與2016年相比,2019年一本達(dá)線人數(shù)減少C與2016年相比,2019年二本達(dá)線人數(shù)增加了0.3倍D2016年與2019年藝體達(dá)線人數(shù)相同12已知點(diǎn)P不在直線l、m上,則“過(guò)點(diǎn)P可以作無(wú)數(shù)個(gè)平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件二、填空題:本題共4小題,

4、每小題5分,共20分。13若向量與向量垂直,則_.14如圖,從一個(gè)邊長(zhǎng)為的正三角形紙片的三個(gè)角上,沿圖中虛線剪出三個(gè)全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個(gè)缺少上底的正三棱柱,而剪出的三個(gè)相同的四邊形恰好拼成這個(gè)正三棱柱的上底,則所得正三棱柱的體積為_(kāi).15從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是_(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)16某班有學(xué)生52人,現(xiàn)將所有學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣方法,抽取一個(gè)容量為4的樣本,已知5號(hào)、31號(hào)、44號(hào)學(xué)生在樣本中,則樣本中還有一個(gè)學(xué)生的編號(hào)是_三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12

5、分)在中, 角,的對(duì)邊分別為, 其中, .(1)求角的值;(2)若,為邊上的任意一點(diǎn),求的最小值.18(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù))(1)請(qǐng)分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長(zhǎng)19(12分)已知,證明:(1);(2).20(12分)某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。?,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)

6、該商場(chǎng)某顧客購(gòu)物金額超過(guò)100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?21(12分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過(guò)的直線分別交橢圓于和,且,問(wèn)是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.22(10分)設(shè)橢圓E:(a,b0)過(guò)M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說(shuō)明理由參考答案一、選擇題:本題共12小題,每小題5

7、分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】根據(jù)分段函數(shù)的定義得,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.2D【解析】直接利用二倍角余弦公式與弦化切即可得到結(jié)果【詳解】,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型3D【解析】根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的

8、表面積【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長(zhǎng)為2,棱錐的高為2,所以,故選:【點(diǎn)睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.4C【解析】由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)即得【詳解】解析:,對(duì)應(yīng)點(diǎn)為,在第三象限故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義掌握復(fù)數(shù)除法法則是解題關(guān)鍵5D【解析】由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,只有是

9、該數(shù)列中的項(xiàng),同理可以得到,也是該數(shù)列中的項(xiàng),且有,或(舍,根據(jù),同理易得,故選:D【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題6A【解析】所求的分母特征,利用變形構(gòu)造,再等價(jià)變形,利用基本不等式求最值.【詳解】解:因?yàn)闈M足,則,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選:【點(diǎn)睛】本題考查通過(guò)拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.7A【解析】設(shè)所求切線的方程為,

10、聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得,由,解得,方程為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點(diǎn)睛】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.8A【解析】由題意可得三角函數(shù)的定義可知:,則:本題選擇A選項(xiàng).9B【解析】試題分析:由題意得,所以,所求雙曲線方程為考點(diǎn):雙曲線方程.10D【解析】雙曲線的漸近線方程是,所以,即 , ,即 ,故選D.1

11、1A【解析】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過(guò)簡(jiǎn)單的計(jì)算逐一驗(yàn)證選項(xiàng)A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯(cuò)誤;2019年二本達(dá)線人數(shù),2016年二本達(dá)線人數(shù),增加了倍,故C錯(cuò)誤;2016年藝體達(dá)線人數(shù),2019年藝體達(dá)線人數(shù),故D錯(cuò)誤.故選:A.【點(diǎn)睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識(shí)圖的能力,是一道較為簡(jiǎn)單的統(tǒng)計(jì)類的題目.12C【解析】根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可【詳解】點(diǎn)不在直線

12、、上,若直線、互相平行,則過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行,即必要性成立,若過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過(guò)點(diǎn)只能作一個(gè)平面同時(shí)和兩條直線平行,則與條件矛盾,即充分性成立則“過(guò)點(diǎn)可以作無(wú)數(shù)個(gè)平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵二、填空題:本題共4小題,每小題5分,共20分。130【解析】直接根據(jù)向量垂直計(jì)算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.

13、【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學(xué)生的計(jì)算能力.141【解析】由題意得正三棱柱底面邊長(zhǎng)6,高為,由此能求出所得正三棱柱的體積【詳解】如圖,作,交于,由題意得正三棱柱底面邊長(zhǎng),高為,所得正三棱柱的體積為:故答案為:1【點(diǎn)睛】本題考查立體幾何中的翻折問(wèn)題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意翻折前后的不變量15【解析】依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可?!驹斀狻俊叭稳蓚€(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),

14、這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是?!军c(diǎn)睛】本題主要考查古典概型的概率求法。1618【解析】根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個(gè)個(gè)體的編號(hào)成等差數(shù)列,故可根據(jù)其中三個(gè)個(gè)體的編號(hào)求出另一個(gè)個(gè)體的編號(hào).【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個(gè)個(gè)體的編號(hào)成等差數(shù)列,已知其中三個(gè)個(gè)體的編號(hào)為5,31,44,故還有一個(gè)抽取的個(gè)體的編號(hào)為18,故答案為:18【點(diǎn)睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1);(2).【解析】(1)利用余弦定理和二倍角的正弦公式,化簡(jiǎn)即可得出結(jié)果;(2)在中, 由余弦定理得,在中結(jié)合正弦定理求

15、出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1) ,由題知,則,則,;(2)在中, 由余弦定理得,設(shè), 其中.在中,所以,所以的幾何意義為兩點(diǎn)連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點(diǎn)睛】本題考查正弦定理和余弦定理的實(shí)際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計(jì)算能力.18(1)x2+y21(2)16【解析】(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡(jiǎn)得到答案.(2)圓心到直線的距離為,故弦長(zhǎng)為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長(zhǎng)為.【點(diǎn)睛】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和

16、轉(zhuǎn)化能力.19(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開(kāi)即可得證.【詳解】證明:(1),(當(dāng)且僅當(dāng)時(shí)取等號(hào)).(2),.【點(diǎn)睛】本題考查不等式的證明,考查基本不等式的運(yùn)用,考查邏輯推理能力,屬于中檔題20(1)(2)選擇方案二更為劃算【解析】(1)計(jì)算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計(jì)算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2

17、)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,則.因?yàn)?,所以選擇方案二更為劃算.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.21(1);(2)存在,.【解析】(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)當(dāng)直線的斜率不存在時(shí),可求得,求得,當(dāng)直線的斜率存在且不為0時(shí),設(shè) 聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項(xiàng)可求得,得出結(jié)論.【詳解】(1)由條件得,所以橢圓的方程為:;(2), 當(dāng)直線的斜率不存在時(shí),此時(shí),當(dāng)直線的斜率存在且不為0時(shí),設(shè),聯(lián)立 消元得, 設(shè),直線的斜率為,同理可得 ,所以,綜合,存在常數(shù),使得成等差數(shù)列.【點(diǎn)睛】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長(zhǎng)公式的相關(guān)問(wèn)題,當(dāng)兩直線的斜率具有關(guān)系時(shí),可能通過(guò)斜率的代換得出另一條線段的弦長(zhǎng),屬于中檔題.22(1)(2)【解析】試題分析:(1)因?yàn)闄E圓E:(a,b0)過(guò)M(2,),N(,1)兩點(diǎn),所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論