版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1函數(shù)(其中,)的圖象如圖,則此函數(shù)表達(dá)式為( )ABCD2函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實數(shù)的值為( )ABC2D3已知函數(shù),若曲線上始終存在兩點,使得,且的中點在軸上,則正實數(shù)的取值范圍為( )ABCD4要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是( )ABCD5如圖,在中, ,是上的一
3、點,若,則實數(shù)的值為( )ABCD6已知實數(shù)集,集合,集合,則( )ABCD7已知等差數(shù)列中,則數(shù)列的前10項和( )A100B210C380D4008是的( )條件A充分不必要B必要不充分C充要D既不充分也不必要9若,則的虛部是A3BCD10是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限11如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為( )ABCD12已知命題,那么為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若在上單調(diào)遞減,則的取值范圍是_14一個袋中裝著標(biāo)有數(shù)字1,2,3,4,5
4、的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數(shù)字最大的為4的概率是_15在平面五邊形中,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是_.16平面區(qū)域的外接圓的方程是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)交通部門調(diào)查在高速公路上的平均車速情況,隨機(jī)抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為,
5、家庭轎車平均車速超過與駕駛員的性別有關(guān);平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員女性駕駛員合計(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機(jī)調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨立,求的分布列和數(shù)學(xué)期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82818(12分)如圖,在棱長為的正方形中,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉(zhuǎn)至點的位置,使得為直二面角(1)證明:;(2)求與面所成角的正弦值19(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點處的切線斜率
6、為.(i)求;(ii)若,求整數(shù)的最大值.20(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.21(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.22(10分)已知是拋物線的焦點,點在軸上,為坐標(biāo)原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由圖象的
7、頂點坐標(biāo)求出,由周期求出,通過圖象經(jīng)過點,求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,則,圖中的點應(yīng)對應(yīng)正弦曲線中的點,所以,解得,故函數(shù)表達(dá)式為故選:B.【點睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識;考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.2C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時,取得最大值,即,當(dāng)時,解得,故選C.點睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時,取得最大值,求解可得實數(shù)
8、的值.3D【解析】根據(jù)中點在軸上,設(shè)出兩點的坐標(biāo),().對分成三類,利用則,列方程,化簡后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標(biāo)互為相反數(shù),不妨設(shè),(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.4C【解析】根據(jù)題意,分兩種情況進(jìn)行討論:語文和數(shù)學(xué)都安排在上午;語文和數(shù)學(xué)一個安排在
9、上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;語文和數(shù)學(xué)都一個安排在上午,一個安排在下午.語文和數(shù)學(xué)一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C【點睛】本題考查排列、組合的應(yīng)用,涉及分類計數(shù)原理的應(yīng)用,屬于中等題5B【解析】變形為,由得,轉(zhuǎn)化在中,利
10、用三點共線可得.【詳解】解:依題: ,又三點共線,解得故選:【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù). 思路是(1)先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值. (2)直線的向量式參數(shù)方程: 三點共線 (為平面內(nèi)任一點,)6A【解析】可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補(bǔ)集和交集的混合運算,屬于基礎(chǔ)題.7B【解析】設(shè)公差為,由已知可得,進(jìn)而求出的通項公式,即可求解.【詳解】設(shè)公差為,,.故選:B.【點睛】本題考查等差數(shù)列的基本量
11、計算以及前項和,屬于基礎(chǔ)題.8B【解析】利用充分條件、必要條件與集合包含關(guān)系之間的等價關(guān)系,即可得出?!驹斀狻吭O(shè)對應(yīng)的集合是,由解得且 對應(yīng)的集合是 ,所以,故是的必要不充分條件,故選B?!军c睛】本題主要考查充分條件、必要條件的判斷方法集合關(guān)系法。設(shè) ,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。9B【解析】因為,所以的虛部是.故選B10D【解析】求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標(biāo)為,該點位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)對應(yīng)的點的位置的判斷,屬于基礎(chǔ)題.11C【解析】根據(jù)三視圖
12、還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運算的核心素養(yǎng).12B【解析】利用特稱命題的否定分析解答得解.【詳解】已知命題,那么是.故選:【點睛】本題主要考查特稱命題的否定,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意可得導(dǎo)數(shù)在恒成立,解出即可【詳解】解
13、:由題意,當(dāng)時,顯然,符合題意;當(dāng)時,在恒成立,故答案為:【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題14【解析】由題,得滿足題目要求的情況有,有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選和有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選,一共有種情況;有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數(shù)字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學(xué)生分析問題和解決問題的能力.1
14、5【解析】設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結(jié)合三角形的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質(zhì)可知,直線與的交點為幾何體外接球的球心,取的中點,連接,由條件得,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結(jié)構(gòu)特征,求得外接球的半徑是解答
15、的關(guān)鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.16【解析】作出平面區(qū)域,可知平面區(qū)域為三角形,求出三角形的三個頂點坐標(biāo),設(shè)三角形的外接圓方程為,將三角形三個頂點坐標(biāo)代入圓的一般方程,求出、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域為,聯(lián)立,解得,則點,同理可得點、,設(shè)的外接圓方程為,由題意可得,解得,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運算求解能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟
16、。17(1)填表見解析;有的把握認(rèn)為,平均車速超過與性別有關(guān)(2)詳見解析【解析】(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出有的把握認(rèn)為,平均車速超過與性別有關(guān).(2)利用二項分布的知識計算出分布列和數(shù)學(xué)期望.【詳解】(1)平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員301040女性駕駛員51520合計352560因為,所以有的把握認(rèn)為,平均車速超過與性別有關(guān).(2)服從,即,.所以的分布列如下0123的期望【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查二項分布分布列和數(shù)學(xué)期望,屬于中檔題.18(1)證明見詳解;(2)【解析】(1)在折疊前的正方形ABCD中,作出對角線AC
17、,BD,由正方形性質(zhì)知,又/,則于點H,則由直二面角可知面 ,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結(jié)交于因為/,故可得,即又旋轉(zhuǎn)不改變上述垂直關(guān)系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結(jié),則即為與面所成角,連結(jié)交于,在中,在中,所以與面所成角的正弦值為【點睛】本題考查了線面垂直的證明與性質(zhì),利用定義求線面角,屬于中檔題.19(1)在上增;在上減;(2)(i);(ii)2【解析】(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由
18、(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時,即在上增;當(dāng)時,即在上增;在上減;(2)(i),.(),即,即,只需.當(dāng)時,在單調(diào)遞增,所以滿足題意;當(dāng)時,所以在上減,在上增,令,.在單調(diào)遞減,所以所以在上單調(diào)遞減,綜上可知,整數(shù)的最大值為.【點睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.20(1)見解析(2)【解析】(1)連結(jié)BM,推導(dǎo)出BCBB1,AA1BC,從而AA1MC,進(jìn)而AA1平面BCM,AA1MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MNAP,由此能證明MN平面AB
19、C(2)推導(dǎo)出ABA1是等腰直角三角形,設(shè)AB,則AA12a,BMAMa,推導(dǎo)出MCBM,MCAA1,BMAA1,以M為坐標(biāo)原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角ACMN的余弦值【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以, 又因為,所以平面,所以,又因為,所以是中點,取中點,連結(jié),因為是的中點,則且, 所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1) (圖2)(2)因為,所以是等腰直角三角形,設(shè),則,.在中,所以.在中,所以,由(1)知,則,如圖2,以為坐標(biāo)原點,的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,則,.所以,則,設(shè)平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題21(1)當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學(xué)校食堂用工合同協(xié)議書樣本
- 北京借款合同的范本2024年
- 服務(wù)期協(xié)議與培訓(xùn)
- 專業(yè)工程合作協(xié)議書模板
- 5.1 延續(xù)文化血脈 (導(dǎo)學(xué)案) 2024-2025學(xué)年統(tǒng)編版道德與法治九年級上冊
- 設(shè)計合同范文大全
- 快遞轉(zhuǎn)讓協(xié)議書樣本
- 女方出軌離婚協(xié)議書范本及分析
- 2024年家具買賣協(xié)議書范文
- 數(shù)字視頻租賃合同
- 行政許可執(zhí)法案卷自評表
- 最新一年級數(shù)學(xué)上冊比輕重題匯總
- CNAS-GL004:2018《標(biāo)準(zhǔn)物質(zhì)_標(biāo)準(zhǔn)樣品的使用指南》(2019-2-20第一次修訂)
- 科普知識講座(火箭)PPT精選課件
- 高三一模動員主題班會-課件(PPT演示)
- 車轍的形成原因及預(yù)防措施
- 風(fēng)電場升壓站建筑工程主要施工方案
- 第五講新聞評論的結(jié)構(gòu)與節(jié)奏
- 從PK-PD看抗菌藥物的合理應(yīng)用
- 加熱爐施工方案
- 意象對話放松引導(dǎo)詞2[生活經(jīng)驗]
評論
0/150
提交評論