2022屆山東省泰安高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆山東省泰安高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆山東省泰安高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆山東省泰安高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆山東省泰安高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1集合的真子集的個(gè)數(shù)為( )A7B8C31D322甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說(shuō):丙被錄用了;乙說(shuō):甲被錄用了;丙說(shuō):我沒(méi)被錄用.若這

2、三人中僅有一人說(shuō)法錯(cuò)誤,則下列結(jié)論正確的是( )A丙被錄用了B乙被錄用了C甲被錄用了D無(wú)法確定誰(shuí)被錄用了3下圖中的圖案是我國(guó)古代建筑中的一種裝飾圖案,形若銅錢(qián),寓意富貴吉祥在圓內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是( )ABCD4過(guò)拋物線C:y24x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MNl,則M到直線NF的距離為( )A BCD5已知函數(shù),則的最小值為( )ABCD6在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是( )ABCD7執(zhí)行下面的程序框圖,如果輸入,則計(jì)算機(jī)輸出的數(shù)是( )ABCD8已知橢圓(ab

3、0)與雙曲線(a0,b0)的焦點(diǎn)相同,則雙曲線漸近線方程為()ABCD9本次模擬考試結(jié)束后,班級(jí)要排一張語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)、生物六科試卷講評(píng)順序表,若化學(xué)排在生物前面,數(shù)學(xué)與物理不相鄰且都不排在最后,則不同的排表方法共有( )A72種B144種C288種D360種10某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為( )A8年B9年C10年D11年11已知雙曲線 (a0,b0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的

4、取值范圍是( )AB(1,2),CD12集合,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二 人、高三人中,抽取人進(jìn)行問(wèn)卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_(kāi)14復(fù)數(shù)為虛數(shù)單位)的虛部為_(kāi)153張獎(jiǎng)券分別標(biāo)有特等獎(jiǎng)、一等獎(jiǎng)和二等獎(jiǎng)甲、乙兩人同時(shí)各抽取1張獎(jiǎng)券,兩人都未抽得特等獎(jiǎng)的概率是_16已知為橢圓上的一個(gè)動(dòng)點(diǎn),設(shè)直線和分別與直線交于,兩點(diǎn),若與的面積相等,則線段的長(zhǎng)為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)),.(1)若有兩個(gè)

5、零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.18(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn)(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積19(12分)已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過(guò)的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.20(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程

6、;(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.21(12分)在中,角所對(duì)的邊分別為,的面積.(1)求角C;(2)求周長(zhǎng)的取值范圍.22(10分)如圖,在四棱錐中,底面是直角梯形且,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大?。唬?)若,且直線與平面所成角為,求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】計(jì)算,再計(jì)算真子集個(gè)數(shù)得到答案.【詳解】,故真子集個(gè)數(shù)為:.故選:.【點(diǎn)睛】本題考查了集合的真子集個(gè)數(shù),意在考查學(xué)生的計(jì)算能力.2C【解析】假設(shè)若甲被錄用了,若乙被錄用了,

7、若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說(shuō)法錯(cuò)誤,乙,丙的說(shuō)法正確,滿足題意,若乙被錄用了,則甲、乙的說(shuō)法錯(cuò)誤,丙的說(shuō)法正確,不符合題意,若丙被錄用了,則乙、丙的說(shuō)法錯(cuò)誤,甲的說(shuō)法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點(diǎn)睛】本題考查了邏輯推理能力,屬基礎(chǔ)題.3C【解析】令圓的半徑為1,則,故選C4C【解析】聯(lián)立方程解得M(3,),根據(jù)MNl得|MN|MF|4,得到MNF是邊長(zhǎng)為4的等邊三角形,計(jì)算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y(x1)由得x或x3.由M在x軸的上方得M(3,),由MNl得|MN|MF|314又NMF等于直線FM

8、的傾斜角,即NMF60,因此MNF是邊長(zhǎng)為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.5C【解析】利用三角恒等變換化簡(jiǎn)三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡(jiǎn)三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.6D【解析】根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.7B【解析】先明確該程序框圖的功能是計(jì)

9、算兩個(gè)數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計(jì)算即可.【詳解】本程序框圖的功能是計(jì)算,中的最大公約數(shù),所以,故當(dāng)輸入,則計(jì)算機(jī)輸出的數(shù)是57.故選:B.【點(diǎn)睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.8A【解析】由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點(diǎn)相同,可得:,即,可得,雙曲線的漸近線方程為:,故選:A【點(diǎn)睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題9B【解析】利用分步計(jì)數(shù)原理結(jié)合排列求解即可【詳解】第一步排語(yǔ)文,英語(yǔ),化學(xué),生物4種,且化學(xué)排在生物前面,有種

10、排法;第二步將數(shù)學(xué)和物理插入前4科除最后位置外的4個(gè)空擋中的2個(gè),有種排法,所以不同的排表方法共有種.選.【點(diǎn)睛】本題考查排列的應(yīng)用,不相鄰采用插空法求解,準(zhǔn)確分步是關(guān)鍵,是基礎(chǔ)題10D【解析】根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.【點(diǎn)睛】本題考查回歸直線過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.11A【解析】若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍【詳解】已知雙曲線的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線與雙曲

11、線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,離心率,故選:【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件12A【解析】計(jì)算,再計(jì)算交集得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由分層抽樣的知識(shí)可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案141【解析】試題分析:,即虛部為1,故填:1.考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算15【解析】利用排列組合公式進(jìn)行計(jì)算,再利用古典概型公式求出不是特等獎(jiǎng)的兩張的概率即可.【詳解】解:3張獎(jiǎng)券分別標(biāo)有特等獎(jiǎng)、一等獎(jiǎng)和二等獎(jiǎng),甲、乙兩人同時(shí)各抽取1張獎(jiǎng)

12、券,則兩人同時(shí)抽取兩張共有: 種排法排除特等獎(jiǎng)外兩人選兩張共有:種排法.故兩人都未抽得特等獎(jiǎng)的概率是: 故答案為:【點(diǎn)睛】本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.16【解析】先設(shè)點(diǎn)坐標(biāo),由三角形面積相等得出兩個(gè)三角形的邊之間的比例關(guān)系,這個(gè)比例關(guān)系又可用線段上點(diǎn)的坐標(biāo)表示出來(lái),從而可求得點(diǎn)的橫坐標(biāo),代入橢圓方程得縱坐標(biāo),然后可得【詳解】如圖,設(shè),由,得,由得,解得,又在橢圓上,故答案為:【點(diǎn)睛】本題考查直線與橢圓相交問(wèn)題,解題時(shí)由三角形面積相等得出線段長(zhǎng)的比例關(guān)系,解題是由把線段長(zhǎng)的比例關(guān)系用點(diǎn)的橫坐標(biāo)表示三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(1);(2)

13、【解析】(1)將有兩個(gè)零點(diǎn)轉(zhuǎn)化為方程有兩個(gè)相異實(shí)根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問(wèn)題轉(zhuǎn)化為對(duì)一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個(gè)零點(diǎn)關(guān)于的方程有兩個(gè)相異實(shí)根由,知有兩個(gè)零點(diǎn)有兩個(gè)相異實(shí)根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為;(2)當(dāng)時(shí),原命題等價(jià)于對(duì)一切恒成立對(duì)一切恒成立.令 令,則在上單增又,使即當(dāng)時(shí),當(dāng)時(shí),即在遞減,在遞增,由知 函數(shù)在單調(diào)遞增即,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問(wèn)題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.18

14、(1)見(jiàn)解析(2)【解析】(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識(shí)易得最大值,然后可計(jì)算體積【詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑?,所以為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫?,所以平面?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑危?,所以,又,所以平面,又平面,所以同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過(guò)作直線的垂線段,在所有垂線段中長(zhǎng)度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時(shí),為的中點(diǎn),即,所以,所以

15、【點(diǎn)睛】本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解題關(guān)鍵19(1);(2)存在,且方程為或.【解析】(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進(jìn)而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過(guò)橢圓的左頂點(diǎn),則,結(jié)合韋達(dá)定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當(dāng)斜率不存在時(shí),以為直徑的圓顯然不經(jīng)過(guò)橢圓的左頂點(diǎn),所以可設(shè)直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標(biāo)分別為,則,而 .要使以為直徑的圓過(guò)橢圓的左頂點(diǎn),則,即 ,所以 ,整理解得或,所以存在過(guò)的直線,

16、使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn),直線的方程為或.【點(diǎn)睛】本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問(wèn)題常轉(zhuǎn)化為方程組關(guān)系問(wèn)題,最終轉(zhuǎn)化為一元二次方程問(wèn)題,故用韋達(dá)定理及判別式是解決圓錐曲線問(wèn)題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問(wèn)題,弦長(zhǎng)問(wèn)題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用20(1)(2)【解析】(1)利用消參法以及點(diǎn)求解出的普通方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化求解出直線的極坐標(biāo)方程;(2)將的坐標(biāo)設(shè)為,利用點(diǎn)到直線的距離公式結(jié)合三角函數(shù)的有界性,求解出取最小值時(shí)對(duì)應(yīng)的值.【詳解】(

17、1)消去參數(shù)得普通方程為,將代入,可得,即所以的極坐標(biāo)方程為(2)的直角坐標(biāo)方程為直線的直角坐標(biāo)方程設(shè)的直角坐標(biāo)為在直線上,的最小值為到直線的距離的最小值,當(dāng),時(shí)取得最小值即,【點(diǎn)睛】本題考查直線的參數(shù)方程、普通方程、極坐標(biāo)方程的互化以及根據(jù)曲線上一點(diǎn)到直線距離的最值求參數(shù),難度一般.(1)直角坐標(biāo)和極坐標(biāo)的互化公式:;(2)求解曲線上一點(diǎn)到直線的距離的最值,可優(yōu)先考慮將點(diǎn)的坐標(biāo)設(shè)為參數(shù)方程的形式,然后再去求解.21()()【解析】()由可得到,代入,結(jié)合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;()由,并結(jié)合正弦定理可得到,利用,可得到,進(jìn)而可求出周長(zhǎng)的范圍【詳解】解:()由可知,.由正弦定理得.由余弦定理得,.()由()知,.的周長(zhǎng)為 .,,的周長(zhǎng)的取值范圍為.【點(diǎn)睛】本題考查了正弦定理、余弦定理在解三角形中的運(yùn)用,考查了三角形的面積公式,考查了學(xué)生分析問(wèn)題、解決問(wèn)題的能力,屬于基礎(chǔ)題22(1);(2).【解析】(1)分別取的中點(diǎn)為,易得兩兩垂直,以所在直線為軸建立空間直角坐標(biāo)系,易得為平面的法向量,只需求出平面的法向量為,再利用計(jì)算即可;(2)求出,利用計(jì)算即可.【詳解】(1)分別取的中點(diǎn)為,連結(jié).

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論