




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),若關(guān)于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為( )ABCD2設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則( )ABCD3已
2、知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的( )條件.A充分不必要B必要不充分C充要D既不充分也不必要4 若x,y滿足約束條件的取值范圍是A0,6B0,4C6, D4, 5已知集合,則中元素的個數(shù)為( )A3B2C1D06過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準(zhǔn)線與軸交于,的面積為,則( )ABCD7若向量,則與共線的向量可以是()ABCD8已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為( )ABCD9已知拋物線和點,直線與拋物線交于不同兩點,直線與拋物線交于另一點給出以下判斷:直線與直線的斜率乘積為;軸;以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的
3、序號是( )ABCD10下圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則( )ABC1D11已知m為實數(shù),直線:,:,則“”是“”的( )A充要條件B充分不必要條件C必要不充分條件D既不充分也不必要條件12在中,角所對的邊分別為,已知,當(dāng)變化時,若存在最大值,則正數(shù)的取值范圍為ABCD二、填空題:本題共4小題,每小題5分,共20分。13在的展開式中,的系數(shù)為_用數(shù)字作答14已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,則的值為_15若雙曲線的兩條漸近線斜率分別為,若,則該雙曲線的離
4、心率為_.16如圖所示的流程圖中,輸出的值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.18(12分)設(shè)數(shù)列的前n項和滿足,(1)證明:數(shù)列是等差數(shù)列,并求其通項公式(2)設(shè),求證:.19(12分)設(shè)數(shù)列an的前n項和為Sn,且a1=1,an+1=2Sn+1,數(shù)列bn滿足a1=b1,點P(bn,bn+1)在x-y+2=0上,nN*. (1)求數(shù)列an,bn的通項公式;(2)設(shè)cn=bnan,求數(shù)列cn的前n項和Tn20(12分)設(shè)函數(shù),其中()當(dāng)為偶函數(shù)時,求函數(shù)的極值;()若函數(shù)在區(qū)間上有兩個零點,求
5、的取值范圍21(12分)已知直線:(為參數(shù)),曲線(為參數(shù))(1)設(shè)與相交于,兩點,求;(2)若把曲線上各點的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線距離的最小值22(10分)已知函數(shù)(1)當(dāng)時,求曲線在點的切線方程;(2)討論函數(shù)的單調(diào)性參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】討論,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時,;當(dāng)時,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點
6、睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力.2D【解析】根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,即,由函數(shù)的單調(diào)區(qū)間知,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.3B【解析】根據(jù)充分必要條件的概念進(jìn)行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條
7、件的判斷,考查學(xué)生綜合運用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.4D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是4,+)故選D5C【解析】集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當(dāng)時,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.6B【解析】設(shè)點、,
8、并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點弦長公式可求得.【詳解】設(shè)點、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,可得,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關(guān)鍵,考查計算能力,屬于中等題.7B【解析】先利用向量坐標(biāo)運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標(biāo)運算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對應(yīng),縱坐標(biāo)與縱坐標(biāo)對應(yīng),切不可錯位.8B【解析】由函數(shù)f(x)
9、的圖象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上單調(diào)遞增,又g(0)1b0,g(1)e2b0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.9B【解析】由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個結(jié)論;將代入拋物線的方程可得,從而,進(jìn)而判斷第二個結(jié)論;設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點設(shè),到準(zhǔn)線的距離分別為,的半徑為,點到準(zhǔn)線的距離為,顯然,三點不共線,進(jìn)而判斷第三個結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有設(shè)點,的坐標(biāo)分
10、別為,則,所則直線與直線的斜率乘積為所以正確將代入拋物線的方程可得,從而,根據(jù)拋物線的對稱性可知,兩點關(guān)于軸對稱,所以直線軸所以正確如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點設(shè),到準(zhǔn)線的距離分別為,的半徑為,點到準(zhǔn)線的距離為,顯然,三點不共線,則所以不正確故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題10D【解析】根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,
11、即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.11A【解析】根據(jù)直線平行的等價條件,求出m的值,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可【詳解】當(dāng)m=1時,兩直線方程分別為直線l1:x+y1=0,l2:x+y2=0滿足l1l2,即充分性成立,當(dāng)m=0時,兩直線方程分別為y1=0,和2x2=0,不滿足條件當(dāng)m0時,則l1l2,由得m23m+2=0得m=1或m=2,由得m2,則m=1,即“m=1”是“l(fā)1l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學(xué)生對這些知識的掌握水平和分析推理能
12、力.(2) 本題也可以利用下面的結(jié)論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗看兩直線是否重合.12C【解析】因為,所以根據(jù)正弦定理可得,所以,所以,其中,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C二、填空題:本題共4小題,每小題5分,共20分。131【解析】利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù)【詳解】二項展開式的通項為 令得的系數(shù)為 故答案為1【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具14【解析】根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出
13、和的值即可.【詳解】解:由,其中,可得,則,令,可得.又令數(shù)列中的,根據(jù)等差數(shù)列的性質(zhì),可得,所以.根據(jù)得出,.所以.故答案為.【點睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.152【解析】由題得,再根據(jù)求解即可.【詳解】雙曲線的兩條漸近線為,可令,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎(chǔ)題.164【解析】根據(jù)流程圖依次運行直到,結(jié)束循環(huán),輸出n,得出結(jié)果.【詳解】由題:,結(jié)束循環(huán),輸出.故答案為:4【點睛】此題考查根據(jù)程序框圖運行結(jié)果求輸出值,關(guān)鍵在于準(zhǔn)確識別循環(huán)結(jié)構(gòu)和判斷框語句.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟
14、。17(1);(2)證明見解析【解析】(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標(biāo)因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.18(1)證明見解析,;(2)證明見解析【解析】(1)由,作差得到,進(jìn)一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【詳解】(1),兩式相減:用換,得,得,即,所以數(shù)列是等差數(shù)列,又,公差,所以.(II).【點睛】本題考查由與的關(guān)系求通項以及裂項相消法求數(shù)列的和,考查
15、學(xué)生的計算能力,是一道容易題.19(1)an=3n-1,bn=1+(n-1)2=2n-1(2)Tn=3-123n-2-2n-123n-1=3-n+13n-1.【解析】(1)利用an與Sn的遞推關(guān)系可以an的通項公式;P點代入直線方程得bn+1-bn=2,可知數(shù)列bn是等差數(shù)列,用公式求解即可.(2)用錯位相減法求數(shù)列的和.【詳解】(1)由an+1=2Sn+1可得an=2Sn-1+1(n2),兩式相減得an+1-an=2an,an+1=3an(n2)又a2=2S1+1=3,所以a2=3a1故an是首項為1,公比為3的等比數(shù)列所以an=3n-1由點P(bn,bn+1)在直線x-y+2=0上,所以b
16、n+1-bn=2則數(shù)列bn是首項為1,公差為2的等差數(shù)列則bn=1+(n-1)2=2n-1(2)因為cn=bnan=2n-13n-1,所以Tn=130+331+532+2n-13n-1則13Tn=131+332+533+2n-33n-1+2n-13n,兩式相減得:23Tn=1+23+232+23n-1-2n-13n所以Tn=3-123n-2-2n-123n-1=3-n+13n-1【點睛】用遞推關(guān)系an=Sn-Sn-1(n2)求通項公式時注意n的取值范圍,所求結(jié)果要注意檢驗n=1的情況;由一個等差數(shù)列和一個等比數(shù)列的積組成的數(shù)列求和,常用錯位相減法求解.20()極小值,極大值;()或【解析】()
17、根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點列表分析導(dǎo)函數(shù)符號變化規(guī)律,即得極值,()先分離變量,轉(zhuǎn)化研究函數(shù),利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍【詳解】()由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以. 此時,則.由,解得. 當(dāng)x變化時,與的變化情況如下表所示: 00極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增. 所以有極小值,有極大值. ()由,得. 所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”. 對函數(shù)求導(dǎo),得. 由,解得,. 當(dāng)x變化時,與的變化情況如下表所示: 00極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增. 又因為,所以
18、當(dāng)或時,直線與曲線,有且只有兩個公共點. 即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.21(1);(2)【解析】(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點坐標(biāo),可得的值;(2)可得曲線的參數(shù)方程,利用點到直線的距離公式結(jié)合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程聯(lián)立方程組,解得與的交點為,則(2)曲線的參數(shù)方程為(為參數(shù)),故點的坐標(biāo)為,從而點到直線的距離是,由此當(dāng)時,取得最小值,且最小值為【點睛】本題主要考查參數(shù)方程與普通方程的轉(zhuǎn)化及參數(shù)方程的基本性質(zhì)、點到直線的距離公式等,屬于中檔題.22(1);(2)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關(guān)系進(jìn)而求得原函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深圳市二手房裝修工程施工合同
- 跨國(非獨占)品牌授權(quán)合作合同專業(yè)版
- 勞動合同判例解析:合同糾紛與法律適用
- 實習(xí)生實習(xí)與就業(yè)合同書
- 反擔(dān)保責(zé)任合同模板
- 購銷合同的反擔(dān)保書
- 全球商標(biāo)使用權(quán)轉(zhuǎn)讓合同
- 實習(xí)人員合同范本
- 終止建筑工程合同協(xié)議書
- 企業(yè)學(xué)徒工用工合同范本
- 開學(xué)安全第一課主題班會課件
- 一年級珍惜糧食主題班會學(xué)習(xí)教案
- 新版《醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范》(2024)培訓(xùn)試題及答案
- 2025年人教版數(shù)學(xué)五年級下冊教學(xué)計劃(含進(jìn)度表)
- 海岸動力學(xué)英文課件Coastal Hydrodynamics-復(fù)習(xí)
- 碳足跡研究-洞察分析
- 硬質(zhì)巖層組合切割開挖技術(shù)
- 2024解析:第二章聲現(xiàn)象-講核心(解析版)
- 2024年考研管理類綜合能力(199)真題及解析完整版
- 2025年初級社會工作者綜合能力全國考試題庫(含答案)
- 2024解析:第十章 浮力綜合應(yīng)用-講核心(解析版)
評論
0/150
提交評論