版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1設(shè),為兩個(gè)平面,則的充要條件是A內(nèi)有無(wú)數(shù)條直線與平行B內(nèi)有兩條相交直線與平行C,平行于同一條直線D,垂直于同一平面2在中,為的外心,若,則( )ABCD3已知函數(shù)f(x)sin2x+sin2(x),則f(x)的最小值為( )ABCD4已
2、知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),則,,的大小關(guān)系為( )ABCD5如圖1,九章算術(shù)中記載了一個(gè)“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去本三尺,問(wèn)折者高幾何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問(wèn)折斷處離地面的高為( )尺. ABCD6某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為( )ABCD27某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老
3、教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有( )種.A360B240C150D1208函數(shù)的圖象如圖所示,則它的解析式可能是( )ABCD9直三棱柱中,則直線與所成的角的余弦值為( )ABCD10如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則( )ABCD11已知等差數(shù)列的公差為-2,前項(xiàng)和為,若,為某三角形的三邊長(zhǎng),且該三角形有一個(gè)內(nèi)角為,則的最大值為( )A5B11C20D2512已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是( )ABCD1二、填空題:本題共4小題,每小題5分,共20分
4、。13已知函數(shù)在點(diǎn)處的切線經(jīng)過(guò)原點(diǎn),函數(shù)的最小值為,則_.14定義,已知,若恰好有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_.15如圖,直線平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_(kāi),點(diǎn)到直線的距離的最大值為_(kāi).16設(shè)定義域?yàn)榈暮瘮?shù)滿足,則不等式的解集為_(kāi)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)如圖,在直棱柱中,底面為菱形,與相交于點(diǎn),與相交于點(diǎn).(1)求證:平面;(2)求直線與平面所成的角的正弦值.18(12分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時(shí),求拋物線的方程;
5、(2)當(dāng)正數(shù)變化時(shí),記分別為的面積,求的最小值19(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)是直線的一點(diǎn),過(guò)點(diǎn)作曲線的切線,切點(diǎn)為,求的最小值.20(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且. (1)求角A的大?。唬?)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),求的值.21(12分)如圖,在平面四邊形中,.(1)求;(2)求四邊形面積的最大值.22(10分)已知等比數(shù)列中,是和的等差中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和
6、.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B【點(diǎn)睛】面面平行的判定問(wèn)題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤2B【解析】首先根據(jù)題中條件和三角形中幾何關(guān)系求出,即可求出的值.【詳解】如圖
7、所示過(guò)做三角形三邊的垂線,垂足分別為,過(guò)分別做,的平行線,由題知,則外接圓半徑,因?yàn)?,所以,又因?yàn)?,所以,由題可知,所以,所以.故選:D.【點(diǎn)睛】本題主要考查了三角形外心的性質(zhì),正弦定理,平面向量分解定理,屬于一般題.3A【解析】先通過(guò)降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)sin2x+sin2(x),=,=,因?yàn)?,所以f(x)的最小值為.故選:A【點(diǎn)睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運(yùn)算求解的能力,屬于中檔題.4C【解析】根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,當(dāng)時(shí),因?yàn)椋栽谏蠁握{(diào)遞增,又在上單調(diào)
8、遞增,所以在上單調(diào)遞增,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對(duì)的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.5B【解析】如圖,已知,解得, ,解得.折斷后的竹干高為4.55尺故選B.6B【解析】首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開(kāi)圖平鋪,點(diǎn)M、N在其四分之一的矩形的對(duì)角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開(kāi)圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長(zhǎng)方形的寬,圓柱底面圓周長(zhǎng)的四分之一為長(zhǎng)的長(zhǎng)方形的對(duì)角線的端點(diǎn)處,所以所求的最短路徑的長(zhǎng)度為,
9、故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問(wèn)題,在解題的過(guò)程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開(kāi)平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.7C【解析】可分成兩類,一類是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師,分別計(jì)算后相加即可【詳解】分成兩類,一類是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類兩個(gè)老教師各帶兩個(gè)新教師,有共有結(jié)對(duì)方式6090150種故選:C【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類還是先
10、分步,確定方法后再計(jì)數(shù)本題中有一個(gè)平均分組問(wèn)題計(jì)數(shù)時(shí)容易出錯(cuò)兩組中每組中人數(shù)都是2,因此方法數(shù)為8B【解析】根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域?yàn)?,所以不合題意;選項(xiàng),計(jì)算,不符合函數(shù)圖象;對(duì)于選項(xiàng), 與函數(shù)圖象不一致;選項(xiàng)符合函數(shù)圖象特征.故選:B【點(diǎn)睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見(jiàn)方法為排除法.9A【解析】設(shè),延長(zhǎng)至,使得,連,可證,得到(或補(bǔ)角)為所求的角,分別求出,解即可.【詳解】設(shè),延長(zhǎng)至,使得,連,在直三棱柱中,四邊形為平行四邊形,(或補(bǔ)角)為直線與所成的角,在中,在中,在中,在中,在中,.故選:A.【點(diǎn)睛】
11、本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.10A【解析】作于,于,分析可得,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.11D【解析】由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項(xiàng)可求得首項(xiàng)
12、,即可求出前n項(xiàng)和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,中最大,最小,又,為三角形的三邊長(zhǎng),且最大內(nèi)角為, 由余弦定理得,設(shè)首項(xiàng)為,即得,所以或,又即,舍去,d=-2前項(xiàng)和.故的最大值為.故選:D【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查求前n項(xiàng)和的最值問(wèn)題,同時(shí)還考查了余弦定理的應(yīng)用.12B【解析】先根據(jù)導(dǎo)數(shù)的幾何意義寫出 在 兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹(shù),從而得出,令函數(shù) ,結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng) 時(shí),則;當(dāng)時(shí),則.設(shè) 為函數(shù)圖像上的兩點(diǎn),當(dāng) 或時(shí),不符合題意,故.則在 處的切線
13、方程為;在 處的切線方程為.由兩切線重合可知 ,整理得.不妨設(shè)則 ,由 可得則當(dāng)時(shí), 的最大值為.則在 上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出 和 的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。130【解析】求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,切線的方程:,又過(guò)原點(diǎn),所以,.當(dāng)時(shí),;當(dāng)時(shí),.故函數(shù)的最小值,所以.故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極
14、值最值,屬于中檔題.14【解析】根據(jù)題意,分類討論求解,當(dāng)時(shí),根據(jù)指數(shù)函數(shù)的圖象和性質(zhì)無(wú)零點(diǎn),不合題意;當(dāng)時(shí),令,得,令 ,得或 ,再分當(dāng),兩種情況討論求解.【詳解】由題意得:當(dāng)時(shí),在軸上方,且為增函數(shù),無(wú)零點(diǎn),至多有兩個(gè)零點(diǎn),不合題意;當(dāng)時(shí),令,得,令 ,得或 ,如圖所示:當(dāng)時(shí),即時(shí),要有3個(gè)零點(diǎn),則,解得;當(dāng)時(shí),即時(shí),要有3個(gè)零點(diǎn),則,令,所以在是減函數(shù),又,要使,則須,所以.綜上:實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題主要考查二次函數(shù),指數(shù)函數(shù)的圖象和分段函數(shù)的零點(diǎn)問(wèn)題,還考查了分類討論的思想和運(yùn)算求解的能力,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬于中檔題.15 【解析】三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都
15、為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長(zhǎng)為,則中線長(zhǎng)為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過(guò)和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,以下求過(guò)和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過(guò)做,直線確定平面,直線確定平面,則,同理,為所求,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面
16、體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.16【解析】根據(jù)條件構(gòu)造函數(shù)F(x),求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論【詳解】設(shè)F(x),則F(x),F(xiàn)(x)0,即函數(shù)F(x)在定義域上單調(diào)遞增,即F(x)F(2x),即x1不等式的解為故答案為:【點(diǎn)睛】本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)證明見(jiàn)解析(2)【解析】(1)要證明平面,只需證明,即可:(2)取中點(diǎn),連,以為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,分別求出與平面的法向量,再利用計(jì)算即可.【詳解】(1)底面為菱形,直棱柱平面.平面.平
17、面;(2)如圖,取中點(diǎn),連,以為原點(diǎn),分別為軸建立如圖所示空間直角坐標(biāo)系:,點(diǎn),設(shè)平面的法向量為,有,令,得又,設(shè)直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點(diǎn)睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學(xué)生的運(yùn)算求解能力,本題解題關(guān)鍵是正確寫出點(diǎn)的坐標(biāo).18(1)x2=4y(2).【解析】試題解析:()設(shè)點(diǎn)P(x0,),由x2=2py(p0)得,y=,求導(dǎo)y=,因?yàn)橹本€PQ的斜率為1,所以=1且x0-2=0,解得p=2,所以拋物線C1的方程為x2=4y()因?yàn)辄c(diǎn)P處的切線方程為:y-=(x-x0),即2x0 x-2py-x02=0, OQ的方程為y=-x根據(jù)切線
18、與圓切,得d=r,即,化簡(jiǎn)得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=1+k2|xP-xQ|=點(diǎn)F(0,)到切線PQ的距離是d=,所以S1=,S2=,而由x04=4x02+4p2知,4p2=x04-4x020,得|x0|2,所以=+12+1,當(dāng)且僅當(dāng)時(shí)取“=”號(hào),即x02=4+2,此時(shí),p=所以的最小值為2+1考點(diǎn):求拋物線的方程,與拋物線有關(guān)的最值問(wèn)題.19(1),;(2)見(jiàn)解析【解析】(1)消去t,得直線的普通方程,利用極坐標(biāo)與普通方程互化公式得曲線的直角坐標(biāo)方程;(2)判斷與圓相離,連接,在中,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因?yàn)椋郧€的直角坐標(biāo)方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,所以,即的最小值為.【點(diǎn)睛】本題考查參數(shù)方程化普通方程,極坐標(biāo)與普通方程互化,直線與圓的位置關(guān)系,是中檔題20(1);(2)【解析】(1)由,利用正弦定理轉(zhuǎn)化整理為,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024游艇銷售及倉(cāng)儲(chǔ)物流服務(wù)合同范本3篇
- 二零二五年度廚房設(shè)備進(jìn)出口貿(mào)易合同2篇
- 專業(yè)2024委托獵頭服務(wù)協(xié)議范本版
- 二零二五年股東股權(quán)解除及退股條件明確協(xié)議書3篇
- 個(gè)人租車合同2024年度版:租賃工程車具體條款3篇
- 2024版承包經(jīng)營(yíng)權(quán)抵押合同
- 二零二五版?zhèn)€人房產(chǎn)抵押典當(dāng)經(jīng)營(yíng)合同3篇
- 臺(tái)州科技職業(yè)學(xué)院《內(nèi)科學(xué)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年股權(quán)投資合同具體條款2篇
- 二零二五年度汽車環(huán)保技術(shù)改造投資合同3篇
- 醫(yī)療組長(zhǎng)競(jìng)聘
- 2024年業(yè)績(jī)換取股權(quán)的協(xié)議書模板
- 顳下頜關(guān)節(jié)疾?。谇活M面外科學(xué)課件)
- 工業(yè)自動(dòng)化設(shè)備維護(hù)保養(yǎng)指南
- 2024人教新版七年級(jí)上冊(cè)英語(yǔ)單詞英譯漢默寫表
- 《向心力》參考課件4
- 2024至2030年中國(guó)膨潤(rùn)土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報(bào)告
- 2024年深圳中考數(shù)學(xué)真題及答案
- 土方轉(zhuǎn)運(yùn)合同協(xié)議書
- Module 3 Unit 1 Point to the door(教學(xué)設(shè)計(jì))-2024-2025學(xué)年外研版(三起)英語(yǔ)三年級(jí)上冊(cè)
- 智能交通信號(hào)燈安裝合同樣本
評(píng)論
0/150
提交評(píng)論