




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知全集為,集合,則( )ABCD2對于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是( )ABCD3某校在高一年級進(jìn)行了數(shù)學(xué)競賽(總分100分),下表為高一一班40名同學(xué)的數(shù)學(xué)競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運(yùn)行相應(yīng)的程序,輸出,的值,則( )A6B8C10D124已知雙曲線的左、右焦點(diǎn)分別
3、為,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為( )ABCD5中國古代數(shù)學(xué)名著九章算術(shù)中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時(shí)其表面積為42.2(平方寸),則圖中x的值為( ) A3B3.4C3.8D46已知實(shí)數(shù)、滿足約束條件,則的最大值為( )ABCD7已知函數(shù),則不等式的解集為( )ABCD8已知,是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則的內(nèi)切圓的半徑為( )ABCD9已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是( )A、B、C、D、1
4、0半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為( )ABCD11已知過點(diǎn)且與曲線相切的直線的條數(shù)有( )A0B1C2D312某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13某種圓柱形的如罐的容積為個(gè)立方單位,當(dāng)它的底面半徑和高的比值為_.時(shí),可使得所用材料最省.14在中,角,所對的邊分別邊,且,設(shè)角的角平分線交于點(diǎn),則的值最小時(shí),_.15已知雙曲線的一條漸近線經(jīng)過點(diǎn),則該雙曲線的離心率為_.16記等差數(shù)列和的前項(xiàng)和分別為和,若,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、
5、證明過程或演算步驟。17(12分)已知是遞增的等比數(shù)列,且、成等差數(shù)列.()求數(shù)列的通項(xiàng)公式;()設(shè),求數(shù)列的前項(xiàng)和.18(12分)已知函數(shù),其中.()若,求函數(shù)的單調(diào)區(qū)間;()設(shè).若在上恒成立,求實(shí)數(shù)的最大值.19(12分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長為且面積為的菱形(1)求橢圓的方程;(2)設(shè),過橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對滿足條件的任意直線,不等式恒成立,求的最小值.20(12分)2019年6月,國內(nèi)的運(yùn)營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對的消費(fèi)意愿,2019年8月,從某
6、地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),
7、求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說明理由.21(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對;(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。22(10分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問是否為定值?若是,求的值;若不是,請說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選
8、項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】對于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.2A【解析】由已知可得的單調(diào)性,再由可得對稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題.3D【解析】根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.
9、【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,所以.故選:D【點(diǎn)睛】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識;考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.4C【解析】由雙曲線定義得,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.由,得. 由,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識,是一道中檔題.5D【解析
10、】根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個(gè)長寬高分別為和一個(gè)底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點(diǎn)睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.6C【解析】作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點(diǎn)時(shí),取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),取得最大值,最大值為.故選:C.【點(diǎn)睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識,屬于中檔題.7D【解析】先判斷函數(shù)的奇偶
11、性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.8B【解析】設(shè)左焦點(diǎn)的坐標(biāo), 由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為: 所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑
12、為r,所以三角形的面積,所以,解得,故選:B【點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.9A【解析】設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進(jìn)而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計(jì)算能力,屬于中檔試題.10B【解析】設(shè)正三棱柱上下底
13、面的中心分別為,底面邊長與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,化為,當(dāng)且僅當(dāng)時(shí)取等號,此時(shí).故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.11C【解析】設(shè)切點(diǎn)為,則,由于直線經(jīng)過點(diǎn),可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)處的切線斜率,建立關(guān)于的方程,從而可求方程【詳解】若直線與曲線切于點(diǎn),則,又,解得,過點(diǎn)與曲線相切的直線方程為或,故選C【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,求解曲線的切線的
14、方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題12C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選二、填空題:本題共4小題,每小題5分,共20分。13【解析】設(shè)圓柱的高為,底面半徑為,根據(jù)容積為個(gè)立方單位可得,再列出該圓柱的表面積,利用導(dǎo)數(shù)求出最值,從而進(jìn)一步得到圓柱的底面半徑和高的比值【詳解】設(shè)圓柱的高為,底面半徑為.該圓柱形的如罐的容積為個(gè)立方單位,即.該圓柱形的表面積為.令,則.令,得;令,得.在上單調(diào)
15、遞減,在上單調(diào)遞增.當(dāng)時(shí),取得最小值,即材料最省,此時(shí).故答案為:.【點(diǎn)睛】本題考查函數(shù)的應(yīng)用,解答本題的關(guān)鍵是寫出表面積的表示式,再利用導(dǎo)數(shù)求函數(shù)的最值,屬中檔題14【解析】根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因?yàn)椋瑒t,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號,又因?yàn)?,所?故答案為:.【點(diǎn)睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.15【解析】根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計(jì)算得答案.【詳解】因?yàn)殡p曲線為,所以該雙曲線的漸近線方程為.又因?yàn)槠湟粭l漸近線經(jīng)過點(diǎn),
16、即,則,由此可得.故答案為:.【點(diǎn)睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.16【解析】結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,因?yàn)?所以.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17();().【解析】()設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項(xiàng)公式可得出數(shù)列的通項(xiàng)公式;()求得,然后利用裂項(xiàng)相消法可求得.【詳解】()設(shè)數(shù)列的公比為,由題意及,知.、成等差數(shù)列成等差數(shù)列,即,解得或(舍去),.數(shù)列
17、的通項(xiàng)公式為;(),.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的求解,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于基礎(chǔ)題.18()單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;().【解析】()求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;()由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】()函數(shù)的定義域?yàn)?當(dāng)時(shí),. 令,解得(舍去),.當(dāng)時(shí),所以,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;()由題意,可知
18、在上恒成立.(i)若,構(gòu)造函數(shù),則,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,即.由題意,知在上恒成立.在上恒成立.由()可知,又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,不合題意,即.此時(shí)構(gòu)造函數(shù),.,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實(shí)數(shù)的最大值為【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問題,本題的難點(diǎn)在于不斷構(gòu)造新函數(shù)來求解,考查推理能力與運(yùn)算求解能力,屬于難題.19(1) (2)【解析】(1)由已知條件列出關(guān)于和的方程,并計(jì)算出和的值,jike 得到橢圓的方程.(
19、2)設(shè)出點(diǎn)和點(diǎn)坐標(biāo),運(yùn)用點(diǎn)坐標(biāo)計(jì)算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),當(dāng)直線垂直于軸時(shí),且此時(shí), 當(dāng)直線不垂直于軸時(shí),設(shè)直線由,得,.要使恒成立,只需,即最小值為【點(diǎn)睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運(yùn)用根與系數(shù)的關(guān)系轉(zhuǎn)化為只含一個(gè)變量的表達(dá)式進(jìn)行求解,需要掌握解題方法,并且有一定的計(jì)算量.20(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化,詳見解析【解析】(1)由從高校大學(xué)生中隨機(jī)
20、抽取1人,該學(xué)生在2021年或2021年之前升級到,結(jié)合古典摡型的概率計(jì)算公式,即可求解;(2)由題意的所有可能值為,利用相互獨(dú)立事件的概率計(jì)算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級到的概率估計(jì)為樣本中早期體驗(yàn)用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗(yàn)用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,事件為“從中期
21、跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨(dú)立,且,所以,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗(yàn)用戶人數(shù)增加.【點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對于求離散型隨機(jī)變量概率分布列問題首先要清楚離散型隨機(jī)變量的可能取值,計(jì)算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計(jì)算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.21 (1)見證明;(2) 【解析】(1)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說明函數(shù)存在極值【詳解】(1)當(dāng)時(shí),于是,.又因?yàn)椋?dāng)時(shí),且.故當(dāng)時(shí),即.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45221-2025化學(xué)品EASZY試驗(yàn)利用轉(zhuǎn)基因tg(cyp19a1b:GFP)斑馬魚胚胎通過雌激素受體檢測內(nèi)分泌活性物質(zhì)
- 鄉(xiāng)村地基出售合同范本
- 2025年鐵嶺考貨運(yùn)從業(yè)資格證
- 2025年永州貨運(yùn)從業(yè)資格證怎么考試
- 加工合同范本道客
- 買車庫出售合同范本
- it購銷合同范本
- 醫(yī)院業(yè)務(wù)合同范本
- 寫醫(yī)療合同范本
- 加氣塊供應(yīng)合同范本
- 基于核心素養(yǎng)的學(xué)習(xí)觀和教學(xué)觀
- 感染性腹瀉及其防控措施
- 第二篇-安全操作規(guī)程
- 《多維度兒童智力診斷量表》MIDSC的編制
- 罪犯教育學(xué)課程
- 紀(jì)檢監(jiān)察辦案談話應(yīng)注意的問題研討
- 超實(shí)用工程結(jié)算單excel模板
- 一年級小學(xué)生新學(xué)期開學(xué)計(jì)劃
- ISO9001-2015質(zhì)量手冊和全套程序文件
- 醫(yī)療器械產(chǎn)品放行程序
- 07j306排水溝圖集標(biāo)準(zhǔn)
評論
0/150
提交評論