2022年黑龍江省哈爾濱市南崗區(qū)高三第四次模擬考試數(shù)學試卷含解析_第1頁
2022年黑龍江省哈爾濱市南崗區(qū)高三第四次模擬考試數(shù)學試卷含解析_第2頁
2022年黑龍江省哈爾濱市南崗區(qū)高三第四次模擬考試數(shù)學試卷含解析_第3頁
2022年黑龍江省哈爾濱市南崗區(qū)高三第四次模擬考試數(shù)學試卷含解析_第4頁
2022年黑龍江省哈爾濱市南崗區(qū)高三第四次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設集合,則( )ABCD2已知集合,則ABCD3已知各項都為正的等差數(shù)列中,若,成等比數(shù)列,則( )ABCD4下列圖形中,不是三棱柱展開圖的是( )ABCD5公差不為零的等差數(shù)列an中

2、,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列an的公差等于( )A1B2C3D46已知,若對任意,關于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是( )ABCD7已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為ABCD8設集合,則集合ABCD9函數(shù)且的圖象是( )ABCD10復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點在( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限11某幾何體的三視圖如圖所示,則此幾何體的體積為( )AB1CD12甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙丙丁三人搶完,若三人均領

3、到整數(shù)元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數(shù)多于其他任何人)的概率是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖,兩個同心圓的半徑分別為和,為大圓的一條 直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括 兩點),則的最大值是_14已知集合,則_.15若展開式中的常數(shù)項為240,則實數(shù)的值為_.16在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內(nèi)的一點已知以為直徑的圓被直線所截得的弦長為,則點的坐標_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知曲線的參數(shù)方程為 為參數(shù)),以直角坐

4、標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.18(12分)已知函數(shù) , (1)求函數(shù)的單調(diào)區(qū)間;(2)當時,判斷函數(shù),()有幾個零點,并證明你的結(jié)論;(3)設函數(shù),若函數(shù)在為增函數(shù),求實數(shù)的取值范圍19(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.20(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.21

5、(12分)設函數(shù).(1)時,求的單調(diào)區(qū)間;(2)當時,設的最小值為,若恒成立,求實數(shù)t的取值范圍.22(10分)一個工廠在某年里連續(xù)10個月每月產(chǎn)品的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關系,請用相關系數(shù)加以說明;(2)建立月總成本與月產(chǎn)量之間的回歸方程;通過建立的關于的回歸方程,估計某月產(chǎn)量為1.98萬件時,產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:參考數(shù)據(jù):,

6、.參考公式:相關系數(shù),.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,2C【解析】分析:根據(jù)集合可直接求解.詳解:,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.3A【解析】試題分析:設公差為或(舍),故選A.考點:等差數(shù)列及其性質(zhì)

7、.4C【解析】根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.5B【解析】設數(shù)列的公差為.由,成等比數(shù)列,列關于的方程組,即求公差.【詳解】設數(shù)列的公差為,.成等比數(shù)列,解可得.故選:.【點睛】本題考查等差數(shù)列基本量的計算,屬于基礎題.6B【解析】構(gòu)造函數(shù)(),求導可得在上單調(diào)遞增,則 ,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),通過導數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為

8、至少存在兩個正整數(shù)x,使得成立,設,則,當時,單調(diào)遞增;當時,單調(diào)遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調(diào)性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.7B【解析】直線的傾斜角為,易得設雙曲線C的右焦點為E,可得中,則,所以雙曲線C的離心率為.故選B8B【解析】先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,解得或,故.對于集合B,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次

9、項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.9B【解析】先判斷函數(shù)的奇偶性,再取特殊值,利用零點存在性定理判斷函數(shù)零點分布情況,即可得解.【詳解】由題可知定義域為,是偶函數(shù),關于軸對稱,排除C,D.又,在必有零點,排除A.故選:B.【點睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.10B【解析】利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于

10、基礎題.11C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積故選.12B【解析】將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13【解析】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,然后利用向量數(shù)量積的坐標運算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直

11、平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即 又平分,所以,則,設,則,所以,所以,所以的最大值是.故答案為:【點睛】本題考查了向量數(shù)量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.14【解析】利用交集定義直接求解【詳解】解:集合奇數(shù),偶數(shù),故答案為:【點睛】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,屬于基礎題153【解析】依題意可得二項式展開式的常數(shù)項為即可得到方程,解得即可;【詳解】解:二項式的展開式中的常數(shù)項為,解得.故答案為:【點睛】本題考查二項式展開式中常數(shù)項的計算,屬于基礎題.16【解析】依題意畫圖,設,

12、根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則, 則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為: 【點睛】本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1),表示圓心為,半徑為的圓;(2)【解析】(1)根據(jù)參數(shù)得到直角坐標系方程,再轉(zhuǎn)化為極坐標方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑

13、得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【點睛】本題考查了參數(shù)方程,極坐標方程,直線和圓的距離的最值,意在考查學生的計算能力和應用能力.18(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個零點,證明見解析;(3)【解析】對函數(shù)求導,利用導數(shù)的正負判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個零點.根據(jù)函數(shù)的零點存在性定理即可證明;記函數(shù),求導后利用單調(diào)性求得,由零點存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導后分情況討論:當時,利用函數(shù)的單調(diào)性將問題轉(zhuǎn)化為的問題;當時,當時,在上恒成立,從而求得的取值范

14、圍.【詳解】(1)由題意知,,列表如下:02 0 極小值 極大值 所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,. (2)函數(shù)有2個零點.證明如下: 因為時,所以,因為,所以在恒成立,在上單調(diào)遞增,由,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個零點,由(1)可得時,,即,故時,所以,由得,平方得,所以,因為,所以在上恒成立,所以函數(shù)在上單調(diào)遞減,因為,所以,由,且在上單調(diào)遞減且連續(xù)得在上僅有一個零點,綜上可知:函數(shù)有2個零點. (3)記函數(shù),下面考察的符號求導得當時恒成立當時,因為,所以在上恒成立,故在上單調(diào)遞減,又因為在上連續(xù),所以由函數(shù)的零點存在性定理得存在唯一的,使, ,因為,所以 因為函數(shù)在上單

15、調(diào)遞增,所以在,上恒成立當時,在上恒成立,即在上恒成立記,則,當變化時,變化情況如下表: 極小值 ,故,即當時,當時,在上恒成立綜合(1)(2)知, 實數(shù)的取值范圍是【點睛】本題考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點存在性定理判斷函數(shù)零點個數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運算求解能力;通過構(gòu)造函數(shù),利用零點存在性定理判斷其零點,從而求出函數(shù)的表達式是求解本題的關鍵;屬于綜合型強、難度大型試題.19(1);(2).【解析】(1)將函數(shù)的解析式表示為分段函數(shù),然后分、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由題意得出,解此不

16、等式即可得出實數(shù)的取值范圍.【詳解】.(1)當時,由,解得,此時;當時,由,解得,此時;當時,由,解得,此時.綜上所述,不等式的解集;(2)當時,函數(shù)單調(diào)遞增,則;當時,函數(shù)單調(diào)遞減,則,即;當時,函數(shù)單調(diào)遞減,則.綜上所述,函數(shù)的最大值為,由題知,解得.因此,實數(shù)的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數(shù)問題,考查分類討論思想的應用,考查運算求解能力,屬于中等題.20(1)12(2)【解析】(1)根據(jù)焦距得焦點坐標,結(jié)合橢圓上的點的坐標,根據(jù)定義;(2)求出橢圓的標準方程,設,聯(lián)立直線和橢圓,結(jié)合韋達定理表示出面積,即可求解最大值.【詳解】(1)設橢

17、園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設,則,當且僅當在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標求橢圓的標準方程,根據(jù)直線與橢圓的交點關系求三角形面積的最值,涉及韋達定理的使用,綜合性強,計算量大.21(1)的增區(qū)間為,減區(qū)間為;(2).【解析】(1)求出函數(shù)的導數(shù),由于參數(shù)的范圍對導數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端點【詳解】解:(1)解:, 當時,解得的增區(qū)間為,解得的減區(qū)間為. (2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;, 因為,所以,令,則恒成立,由于,當時,故函數(shù)在上是減函數(shù),所以成立; 當時,若則,故函數(shù)在上是增函數(shù),即對時,與題意不符;綜上,為所求【點睛】本題考查導數(shù)在最大值與最小值問題中的應用,求解本題關鍵是根據(jù)導數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論