![2022年河北省保定市高三壓軸卷數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view/fb7a8a7da321639386275876107719b4/fb7a8a7da321639386275876107719b41.gif)
![2022年河北省保定市高三壓軸卷數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view/fb7a8a7da321639386275876107719b4/fb7a8a7da321639386275876107719b42.gif)
![2022年河北省保定市高三壓軸卷數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view/fb7a8a7da321639386275876107719b4/fb7a8a7da321639386275876107719b43.gif)
![2022年河北省保定市高三壓軸卷數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view/fb7a8a7da321639386275876107719b4/fb7a8a7da321639386275876107719b44.gif)
![2022年河北省保定市高三壓軸卷數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view/fb7a8a7da321639386275876107719b4/fb7a8a7da321639386275876107719b45.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目
2、要求的。1已知數(shù)列為等差數(shù)列,且,則的值為( )ABCD2如圖所示,三國時代數(shù)學家趙爽在周髀算經(jīng)中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )A134B67C182D1083羽毛球混合雙打比賽每隊由一男一女兩名運動員組成. 某班級從名男生,和名女生,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為( )ABCD4若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為( )ABCD5
3、拋物線的焦點為,點是上一點,則( )ABCD6已知實數(shù),函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是( )ABCD7已知命題:,則為( )A,B,C,D,8半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )ABCD9已知向量,若,則( )ABCD10已知復數(shù),則( )ABCD11易系辭上有“河出圖,洛出書”之說,河圖、洛書是中華
4、文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的概率為( ) ABCD12設(shè)等差數(shù)列的前n項和為,且,則( )A9B12CD二、填空題:本題共4小題,每小題5分,共20分。13若函數(shù),則使得不等式成立的的取值范圍為_.14三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為_.15如圖,機器人亮亮沿著單位網(wǎng)格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有_種16
5、點P是ABC所在平面內(nèi)一點且在ABC內(nèi)任取一點,則此點取自PBC內(nèi)的概率是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.18(12分)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數(shù)m,都有,并證明你的結(jié)論.19(12分)如圖,平面四邊形為直角梯形,將繞著翻
6、折到.(1)為上一點,且,當平面時,求實數(shù)的值;(2)當平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.20(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,設(shè)數(shù)列的前項和為,求大于的最小的正整數(shù)的值21(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,且這六名同學答題正確與否相互之間沒有影響(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學期望22(10分)已知
7、在中,內(nèi)角所對的邊分別為,若,且.(1)求的值;(2)求的面積.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導公式計算可得【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,故選:B【點睛】本題考查等差數(shù)列的下標和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題2B【解析】根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,則小正方形的邊長為,小正方形的面積,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,故選:B.【點睛】本題主要考查幾何概
8、型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.3B【解析】根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人 :將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應(yīng)用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.4B【解析】由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解
9、】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.5B【解析】根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.6D【解析】根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質(zhì)分析可得,當,由導數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得,再結(jié)合函數(shù)的單調(diào)性,分析可得,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,當,若為增函數(shù),則,當,若為增函數(shù),必有在上恒成立,變形可得:,又由,可得在上單調(diào)遞減,則,若在
10、上恒成立,則有,若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,聯(lián)立可得:.故選:D.【點睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).7C【解析】根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎(chǔ)題.8D【解析】根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾
11、何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.9A【解析】利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎(chǔ)題.10B【解析】分析:利用的恒等式,將分子、分母同時乘以 ,化簡整理得 詳解: ,故選B點睛:復數(shù)問題是高考數(shù)學中的常考問題,屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問
12、題.11C【解析】先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.12A【解析】由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.【點睛】本題考查等差數(shù)列基本量的計算,考查學生運算求解能力,是一道基礎(chǔ)題.二、填空
13、題:本題共4小題,每小題5分,共20分。13【解析】分,兩種情況代入討論即可求解.【詳解】,當時,符合;當時,不滿足.故答案為:【點睛】本題主要考查了分段函數(shù)的計算,考查了分類討論的思想.14【解析】基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù)由此能求出三人都收到禮物的概率【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù)則三人都收到禮物的概率故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎(chǔ)題.15【解析】分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應(yīng)
14、的走法種數(shù),然后利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】分三步來考查:從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;從到,由可知有種走法.由分步乘法計數(shù)原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數(shù)原理和組合計數(shù)原理的應(yīng)用,屬于中等題.16【解析】設(shè)是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結(jié)合幾何概型求得點取自三角形的概率.【詳解】設(shè)是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所
15、以此點取自內(nèi)的概率是故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)函數(shù)與的圖象在區(qū)間上有交點;證明見解析;(2)且;【解析】(1)令,結(jié)合函數(shù)零點的判定定理判斷即可;設(shè)切點橫坐標為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可【詳解】解:(1)當時,函數(shù),令,則,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點,故函數(shù)與的圖象在區(qū)間上有交點;證明:假設(shè)存在,使得直線是曲線的切線,切點橫坐標為,且,則切線
16、在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時,故方程有唯一解,又,故不存在,即證;(2)由得,令,則,當時,遞減,故當時,遞增,當時,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,當時,故在遞減,可得當時,當時,易證,令,令,故,則,故在遞增,則,即時,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值由(1)知,故在遞減,在遞增,故時,遞增,不合題意;當時,當,時,遞減,當時,遞增,故在處取極小值,符合題意,綜上,實數(shù)的范圍是且【點睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題1
17、8(1);(2)存在, Q為線段中點【解析】解法一:(1)作出平面與平面的交線,可證平面,計算,得出,從而得出的大?。唬?)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設(shè)上存在一定點Q,設(shè)此點的橫坐標為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設(shè)與平面的公共點為,連接,則平面平面,四邊形是正方形,平面,平面,又,平面,為直線AP與平面所成角,平面,平面,平面平面,又為的中點,直線AP與平面所成角為.(2)四邊形正方形,平面,平面, ,又,平面,又平面, ,當Q為線段中點時,對于任
18、意的實數(shù),都有. 解法二:(1)建立如圖所示的空間直角坐標系,則,所以, 又由,則為平面的一個法向量,設(shè)直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設(shè)此點的橫坐標為,則,依題意,對于任意的實數(shù)要使, 等價于,即,解得,即當Q為線段中點時,對于任意的實數(shù),都有.【點睛】本題考查了線面垂直的判定定理、線面角的計算,考查了空間向量在立體幾何中的應(yīng)用,屬于中檔題.19(1);(2).【解析】(1)連接交于點,連接,利用線面平行的性質(zhì)定理可推導出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導出,可得出為平面與平面所
19、成的銳二面角,由此計算出、,并證明出平面,可得出直線與平面所成的角為,進而可求得與平面所成角的正弦值.【詳解】(1)連接交于點,連接,平面,平面,平面平面,在梯形中,則,所以,;(2)取中點,連接、,過點作,則,作于,連接. 為的中點,且,且,所以,四邊形為平行四邊形,由于,為的中點,所以,同理,平面,為面與面所成的銳二面角,則,平面,平面,面,為與底面所成的角,.在中,.因此,與平面所成角的正弦值為.【點睛】本題考查利用線面平行的性質(zhì)求參數(shù),同時也考查了線面角的計算,涉及利用二面角求線段長度,考查推理能力與計算能力,屬于中等題.20(1)(2)4【解析】(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,又是與的等比中項,設(shè)數(shù)列的公差為,且,則,解得,;由題意可知 ,得:,由得, 滿足條件的最小的正整數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國差壓式孔板流量計行業(yè)投資前景及策略咨詢研究報告
- 2025年小檔后軸項目可行性研究報告
- 2025年商務(wù)飲水機項目可行性研究報告
- 2025年冶金工業(yè)托輪鏈項目可行性研究報告
- 2025至2030年中國面包墊紙數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國錐柄鉆頭數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年聚氯乙烯絕緣和護套控制電纜項目投資價值分析報告
- 2025至2030年中國解熱止痛散數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國膠柄電烙鐵數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國硫酸鋯數(shù)據(jù)監(jiān)測研究報告
- 2024-2025學年初中七年級上學期數(shù)學期末綜合卷(人教版)含答案
- 體育活動策劃與組織課件
- 公司違規(guī)違紀連帶處罰制度模版(2篇)
- 2025屆高考物理二輪總復習第一編專題2能量與動量第1講動能定理機械能守恒定律功能關(guān)系的應(yīng)用課件
- 內(nèi)業(yè)資料承包合同個人與公司的承包合同
- 2024年計算機二級WPS考試題庫(共380題含答案)
- 【履職清單】2024版安全生產(chǎn)責任體系重點崗位履職清單
- 跨學科實踐活動10調(diào)查我國航天科技領(lǐng)域中新型材料新型能源的應(yīng)用課件九年級化學人教版(2024)下冊
- 2022年全國醫(yī)學博士英語統(tǒng)一考試試題
- 學校工作總結(jié)和存在的不足及整改措施
- Petrel中文操作手冊(1-3)
評論
0/150
提交評論