福建省政和2021-2022學(xué)年高三沖刺模擬數(shù)學(xué)試卷含解析_第1頁
福建省政和2021-2022學(xué)年高三沖刺模擬數(shù)學(xué)試卷含解析_第2頁
福建省政和2021-2022學(xué)年高三沖刺模擬數(shù)學(xué)試卷含解析_第3頁
福建省政和2021-2022學(xué)年高三沖刺模擬數(shù)學(xué)試卷含解析_第4頁
福建省政和2021-2022學(xué)年高三沖刺模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1某幾何體的三視圖如圖所示,則該幾何體的體積是( )ABCD2費馬素數(shù)是法國大數(shù)學(xué)家費馬命名的,形如的素數(shù)(如:)為

2、費馬索數(shù),在不超過30的正偶數(shù)中隨機選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()ABCD3設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則在復(fù)平面內(nèi)對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限4閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出的的值為( )ABCD5已知拋物線和點,直線與拋物線交于不同兩點,直線與拋物線交于另一點給出以下判斷:以為直徑的圓與拋物線準線相離;直線與直線的斜率乘積為;設(shè)過點,的圓的圓心坐標為,半徑為,則其中,所有正確判斷的序號是( )ABCD6設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點為,則不可能為( )ABCD7若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為

3、( )A85B84C57D568設(shè)集合Ay|y2x1,xR,Bx|2x3,xZ,則AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,39設(shè),則( )ABCD10已知函數(shù)若存在實數(shù),且,使得,則實數(shù)a的取值范圍為( )ABCD11已知為正項等比數(shù)列,是它的前項和,若,且與的等差中項為,則的值是( )A29B30C31D3212已知集合(),若集合,且對任意的,存在使得,其中,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知等比數(shù)列滿足公比,為其前項和,構(gòu)成等差數(shù)列,則_14甲、乙、丙、丁四人參加冬季滑雪比賽

4、,有兩人獲獎.在比賽結(jié)果揭曉之前,四人的猜測如下表,其中“”表示猜測某人獲獎,“”表示猜測某人未獲獎,而“”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎?wù)呤莀.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測乙的猜測丙的猜測丁的猜測15已知為等差數(shù)列,為其前n項和,若,則_.16設(shè)為定義在上的偶函數(shù),當時,(為常數(shù)),若,則實數(shù)的值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當時,求證:.18(12分)已知函數(shù)(mR)的導(dǎo)函數(shù)為(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對

5、數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合19(12分)已知離心率為的橢圓經(jīng)過點.(1)求橢圓的方程;(2)薦橢圓的右焦點為,過點的直線與橢圓分別交于,若直線、的斜率成等差數(shù)列,請問的面積是否為定值?若是,求出此定值;若不是,請說明理由.20(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.21(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點,使面,若存在確定點位置,若不存在,請說明理由;(2)當為中點時,求二面角的余弦值.22(10分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1(1)求橢圓的方程;(1)若過點的直線與

6、橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。2B【解析】基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,共有個,根據(jù)古典概型求出概率【詳解】在不超過的正偶數(shù)中隨機選取一數(shù),基本事件總數(shù)能表示為兩個

7、不同費馬素數(shù)的和的只有,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題3A【解析】由復(fù)數(shù)的除法運算可整理得到,由此得到對應(yīng)的點的坐標,從而確定所處象限.【詳解】由得:,對應(yīng)的點的坐標為,位于第一象限.故選:.【點睛】本題考查復(fù)數(shù)對應(yīng)的點所在象限的求解,涉及到復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.4C【解析】根據(jù)給定的程序框圖,計算前幾次的運算規(guī)律,得出運算的周期性,確定跳出循環(huán)時的n的值,進而求解的值,得到答案.【詳解】由題意,第1次循環(huán),滿足判斷條件;第2次循環(huán),滿足判斷條件;第3次循環(huán),滿足判斷條件; 可得的值滿足以3項為

8、周期的計算規(guī)律,所以當時,跳出循環(huán),此時和時的值對應(yīng)的相同,即.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出問題,其中解答中認真審題,得出程序運行時的計算規(guī)律是解答的關(guān)鍵,著重考查了推理與計算能力.5D【解析】對于,利用拋物線的定義,利用可判斷;對于,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標表示直線與直線的斜率乘積,即可判斷;對于,將代入拋物線的方程可得,從而,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點設(shè),到準線的距離分別為,的半徑為,點到準線的距離為,顯然

9、,三點不共線,則所以正確由題意可設(shè)直線的方程為,代入拋物線的方程,有設(shè)點,的坐標分別為,則,所以則直線與直線的斜率乘積為所以正確將代入拋物線的方程可得,從而,根據(jù)拋物線的對稱性可知,兩點關(guān)于軸對稱,所以過點,的圓的圓心在軸上由上,有,則所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以于是,代入,得,所以所以正確故選:D【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.6D【解析】依題意,設(shè),由,得,再一一驗證.【詳解】設(shè),因為,所以,經(jīng)驗證不滿足,故選:D.【點睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)

10、題.7A【解析】先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎(chǔ)題.8C【解析】先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可【詳解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,AB0,1,2,3,故選:C【點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題9D【解析】結(jié)合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,即可選出答案.【詳解】由,即,又,即,即,所以.故選:D.【點睛】本題考

11、查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.10D【解析】首先對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2)(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問題,涉及到的知識點有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結(jié)合,屬于較難題目.11B【解析】設(shè)正項等比數(shù)列的公比為q,運用等比數(shù)列的通項公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計算即

12、可得到所求【詳解】設(shè)正項等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項為,即有a4+a7=,即16q3+16q6,=,解得q=(負值舍去),則有S5=1故選C【點睛】本題考查等比數(shù)列的通項和求和公式的運用,同時考查等差數(shù)列的性質(zhì),考查運算能力,屬于中檔題12C【解析】根據(jù)題目中的基底定義求解.【詳解】因為,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。130【解析】利用等差中項以及等比數(shù)列的前項和公式即可求解.【詳解】由,是等差數(shù)列可知因為,所以,故答案為:0【點睛

13、】本題考查了等差中項的應(yīng)用、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.14乙、丁【解析】本題首先可根據(jù)題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據(jù)“四個人中有且只有兩個人的猜測是正確的”將題目所

14、給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡單題.151【解析】試題分析:因為是等差數(shù)列,所以,即,又,所以,所以故答案為1【考點】等差數(shù)列的基本性質(zhì)【名師點睛】在等差數(shù)列五個基本量,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項公式、前項和公式列出關(guān)于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應(yīng)用.161【解析】根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當時,所以,所以實數(shù)的值為1.故答案為:1【點睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運算求解的能力

15、,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析(2)見解析【解析】(1)根據(jù)的導(dǎo)函數(shù)進行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域為, 當時,由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;當時,由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;當時,所以在上單調(diào)遞增;當時,由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當時,欲證,只需證,令,則,因存在,使得成立,即有,使得成立.當變化時,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因為,所以,所以.即,所以當

16、時,成立.【點睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.18(1)(2)1,2【解析】(1)求解導(dǎo)數(shù),表示出,再利用的導(dǎo)數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識求出的最小值,再結(jié)合導(dǎo)數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,所以因為整理得,設(shè),則,所以單調(diào)遞增,又因為, 所以存在,使得,設(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因為,所以存在,使得,即,當時,當時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值

17、集合為1,2【點睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究極值問題一般轉(zhuǎn)化為導(dǎo)數(shù)的零點問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強,難度較大,側(cè)重考查數(shù)學(xué)抽象和邏輯推理的核心素養(yǎng).19 (1);(2)是,【解析】(1)根據(jù)及可得,再將點代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程; (2) 可設(shè)所在直線的方程為,將直線的方程與橢圓的方程聯(lián)立,用根與系數(shù)的關(guān)系求出,然后將直線、的斜率、分別用表示,利用可求出,從而可確定點恒在一條直線上,結(jié)合圖形即可求出的面積【詳解】(1)因為橢圓的離心率為,所以,即,又,所以,因為點在橢圓上,所以,由解得,所以橢圓C

18、的方程為(1)可知,可設(shè)所在直線的方程為,由,得,設(shè),則,設(shè)直線、的斜率分別為、,因為三點共線,所以,即,所以,又,因為直線、的斜率成等差數(shù)列,所以,即,化簡得,即點恒在一條直線上,又因為直線方程為,且,所以是定值.【點睛】本題主要考查橢圓的方程,直線與橢圓的位置關(guān)系及橢圓中的定值問題,屬于中檔題20(1);(2)證明見解析【解析】(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.21(1)見解析;(2)【解析】(1)要證明PC面ADE,由已知可得ADPC,只需滿足即可,從而得到點E為中點;(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角PAED的余弦值【詳解】(1)法一:要證明PC面ADE,易知AD面PDC,即得ADPC,故只需即可,所以由,即存在點E為PC中點. 法二:建立如圖所示的空間直角坐標系DXYZ, 由題意知PDCD1,設(shè), ,由,得,即存在點E為PC中點.(2)由(1)知, ,設(shè)面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得 所以,故所求二面角PAED的余弦值為.【點睛】本題考查二面角的平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論