版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知復(fù)數(shù)z=2i1-i,則z的共軛復(fù)數(shù)在復(fù)平面對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限2已知等差數(shù)列中,則()A10B16C20D243函數(shù)的大致圖象為(
2、 )ABCD4若函數(shù)在時取得極值,則( )ABCD5若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是( )ABCD6已知平面和直線a,b,則下列命題正確的是( )A若,b,則B若,則C若,則D若,b,則7半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )ABCD8某個命題與自然數(shù)有關(guān),且已證得“假設(shè)時
3、該命題成立,則時該命題也成立”現(xiàn)已知當時,該命題不成立,那么( )A當時,該命題不成立B當時,該命題成立C當時,該命題不成立D當時,該命題成立9設(shè),則ABCD10已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A1B2C3D411已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為( )A1BC2D12設(shè),則“”是“”的A充分而不必要條件B必要而不充分條件C充要條件D既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13已知f(x)為偶函數(shù),當x0時,f(x)=e-x-1-x,則曲線y=f(x)在點(1,2)處的切線方程是_.14函數(shù)在的零點個數(shù)為_15一個空間幾何體的三視圖及
4、部分數(shù)據(jù)如圖所示,則這個幾何體的體積是_16在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在三棱柱中,平面,且.(1)求棱與所成的角的大??;(2)在棱上確定一點,使二面角的平面角的余弦值為.18(12分)隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性50100女性70100合計(1)完成上表,并根據(jù)
5、以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)?(2)現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學(xué)期望和方差參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819(12分)已知動圓恒過點,且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點
6、,交軌跡在處的切線于點,問:是否存在實常數(shù)使,若存在,求出的值;若不存在,說明理由.20(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.21(12分)已知,函數(shù).()若在區(qū)間上單調(diào)遞增,求的值;()若恒成立,求的最大值.(參考數(shù)據(jù):)22(10分)已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于點.(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對稱點為,證明:直線過軸上的定點.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四
7、個選項中,只有一項是符合題目要求的。1C【解析】分析:根據(jù)復(fù)數(shù)的運算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點,得到答案詳解:由題意,復(fù)數(shù)z=2i1-i=2i1+i1-i1+i=-1+i,則z=-1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點的坐標為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C點睛:本題主要考查了復(fù)數(shù)的四則運算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運算能力2C【解析】根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.3A【解析】利用特殊點的坐標代入,排除掉C,D;再由
8、判斷A選項正確.【詳解】,排除掉C,D;,.故選:A【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.4D【解析】對函數(shù)求導(dǎo),根據(jù)函數(shù)在時取得極值,得到,即可求出結(jié)果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于常考題型.5C【解析】求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:
9、C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題6C【解析】根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足,b,故本命題不正確;B:當時,也可以滿足,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當,時,能得到,故本命題是正確的;D:當時,也可以滿足,b,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.7D【解析】根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點截去8個三棱錐所
10、得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.8C【解析】寫出命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題為“假設(shè)當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,
11、故選:C.【點睛】本題考查逆否命題與原命題等價性的應(yīng)用,解題時要寫出原命題的逆否命題,結(jié)合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.9C【解析】分析:利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點睛:復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運算要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.10D【解析】先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因為成等比數(shù)列,所以,
12、解得.【點睛】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.11B【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.12A【解析】根據(jù)對數(shù)的運算分別從充分性和必要性去證明即可.【詳解】若, ,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要
13、條件的定義,判斷充要條件的方法是: 若為真命題且為假命題,則命題p是命題q的充分不必要條件; 若為假命題且為真命題,則命題p是命題q的必要不充分條件; 若為真命題且為真命題,則命題p是命題q的充要條件; 若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件. 判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13y=2x【解析】試題分析:當x0時,-x0時,函數(shù)y=f(x),則當x0時,求函數(shù)的解析式”有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當x0時,函數(shù)的解析式為y=-f(x);若f(x)為
14、奇函數(shù),則函數(shù)的解析式為y=-f(-x)14【解析】求出的范圍,再由函數(shù)值為零,得到的取值可得零點個數(shù)【詳解】詳解:由題可知,或解得,或故有3個零點【點睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點,屬于基礎(chǔ)題15【解析】先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題16【解析】根據(jù)題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點建立空間直角坐標系:設(shè)
15、正方體的棱長為1,則 所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1) (2)【解析】試題分析:(1)因為ABAC,A1B平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大??;(2)設(shè)棱B1C1上的一點P,由向量共線得到P點的坐標,然后求出兩個平
16、面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所成角的余弦值,由此確定出P點的坐標試題解析:解(1)如圖,以為原點建立空間直角坐標系,則,.,故與棱所成的角是.(2)為棱中點,設(shè),則.設(shè)平面的法向量為,則,故而平面的法向量是,則,解得,即為棱中點,其坐標為.點睛:本題主要考查線面垂直的判定與性質(zhì),以及利用空間向量求二面角.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應(yīng)點的坐標,求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為
17、向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.18()詳見解析;();數(shù)學(xué)期望為6,方差為2.4.【解析】(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)(2) 由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購的概率 由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,由題意,由此能求出隨機變量的數(shù)學(xué)期望和方差【詳解】解:(1)完成列聯(lián)表(單位:人):經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性5050100女性7030100合計12080200由列聯(lián)表,得:,能在犯錯誤的概率不超過0.01的前提下認為我市
18、市民網(wǎng)購與性別有關(guān)(2)由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,選取的3人中至少有2人經(jīng)常網(wǎng)購的概率為: 由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,將頻率視為概率,從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購市民的概率為0.6,由題意,隨機變量的數(shù)學(xué)期望,方差D(X)=【點睛】本題考查獨立檢驗的應(yīng)用,考查概率、離散型隨機變量的分布列、數(shù)學(xué)期望、方差的求法,考查古典概型、二項分布等基礎(chǔ)知識,考查運算求解能力,是中檔題19(1);(2)存在,.【解析】(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點的坐標,即可求得方程;(2)由拋物線方程求得點的坐標,設(shè)出直線的
19、方程,利用導(dǎo)數(shù)求得點的坐標,聯(lián)立直線的方程和拋物線方程,結(jié)合韋達定理,求得,進而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點與點的距離始終等于點到直線的距離,由拋物線的定義知圓心的軌跡是以點為焦點,直線為準線的拋物線,則,.圓心的軌跡方程為.(2)因為是軌跡上橫坐標為2的點,由(1)不妨取,所以直線的斜率為1.因為,所以設(shè)直線的方程為,.由,得,則在點處的切線斜率為2,所以在點處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),則,.因為點,在直線上,所以,所以,所以.故存在,使得.【點睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導(dǎo)數(shù)的幾何意義,屬綜合性中檔題.20(1);(2)【解析】(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設(shè),所以所以當時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標方程轉(zhuǎn)化為極坐標方程,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鉗工裝配知識培訓(xùn)課件
- 團隊精神建設(shè)
- 二零二五年度房地產(chǎn)項目聯(lián)合開發(fā)合作節(jié)能減排合同3篇
- 2025版酒店客房裝飾材料采購合同2篇
- 傳統(tǒng)節(jié)日之元宵節(jié)
- 二零二五年度城市觀光包車租賃合同2篇
- 二零二五年度大摩退出中金戰(zhàn)略合作終止倒計時協(xié)議2篇
- 二零二五年度房建防水勞務(wù)分包合同(含設(shè)計變更)范本3篇
- 貴州商學(xué)院《房地產(chǎn)法學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州黔南科技學(xué)院《建筑供配電與照明》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年《軍事理論》考試題庫附答案(含各題型)
- 第23課《出師表》課件(共48張)
- 中考句子翻譯經(jīng)典100句
- 2024年環(huán)境影響評價工程師之環(huán)評法律法規(guī)題庫及完整答案【各地真題】
- 公務(wù)員考試常識題庫500題(含答案)V
- 華為基于價值鏈循環(huán)的績效管理體系建設(shè)
- 手機拍攝短視頻
- 招聘專員述職報告doc
- 英語-北京市西城區(qū)2023-2024學(xué)年高三期末考試題和答案
- 福利待遇綜述
- 竣工驗收階段服務(wù)配合保障措施
評論
0/150
提交評論