教育部參賽_第10篇一次方程組復習課教案設計_劉榮華_第1頁
教育部參賽_第10篇一次方程組復習課教案設計_劉榮華_第2頁
教育部參賽_第10篇一次方程組復習課教案設計_劉榮華_第3頁
教育部參賽_第10篇一次方程組復習課教案設計_劉榮華_第4頁
教育部參賽_第10篇一次方程組復習課教案設計_劉榮華_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、教育部參賽七年級下一次方程組復習課教案設計_劉榮華一、教案背景1,面向學生: 中學 小學 2,學科:數(shù)學2,課時:13,學生課前準備:一、課前預習所學知識點二、讓學生提出自學中遇到的問題。三、完成課后習題二、教學課題1、能熟練、準確地解二元一次方程組;會用二元一次方程組解決實際問題;通過對本章的內容進行回顧和總結,能把握各知識點間的聯(lián)系,進一步感受方程(組)模型的重要性。2. 通過回顧反思,進一步加深對數(shù)學中的消元、化歸思想的理解,熟練、靈活地運用消元法解方程組;學會如何構建知識體系,體會前后知識間的聯(lián)系。三、教材分析本課是第10章的章末復習課,是學生再認知的過程,因此主要任務使學生在復習回顧

2、的基礎上,系統(tǒng)掌握本章的主要內容及其聯(lián)系,并進一步訓練學生靈活運用所學知識分析解決問題的能力。本章主要內容包括:利用二元一次方程組分析與解決實際問題,二元一次方程組及其相關概念,消元思想和用代入法、加減法解二元一次方程組以及三元一次方程組解法舉例。其中,以方程組為工具分析問題、解決含有多個未知數(shù)的問題既是本章的重點,又是難點。本章所涉及的數(shù)學思想方法主要包括兩個:一個是由實際問題抽象為方程組這個過程中蘊涵的符號化、模型化的思想;另一個是解方程組的過程中蘊涵的消元、化歸思想,它在解方程組中具有指導作用。解二元一次方程組的各個步驟,都是為最終使方程組變形為x=a,的形式而實施的,即在保持各方程的左

3、右兩邊相等關系的前提之下,使“未知”逐步轉化為“已知”。解三元以及多元方程組的基本策略是“消元”,即逐步減少未知數(shù)的個數(shù),以至使方程組化歸為一元方程,先解出一個未知數(shù),然后逐步解出其他未知數(shù)。代入法和加減法都是消元解方程組的方法,只是具體消元的手法有所不同?!緩土曋攸c與難點】重點:1、總結本章的主要內容,并與同學交流2、同一元一次方程一樣,一次方程組也是一種重要的數(shù)學模型,回憶建立和求解一元一次模型的過程,你能說出建立和求解解一次方程組模型的過程嗎?與同學交流。 難點:根據(jù)具體問題中的數(shù)量關系列出一次方程組。四、教學方法【百度知道】關于七年級數(shù)學教學的實踐與探究 HYPERLINK /p-19

4、6837638.html /p-196837638.html1、注意轉化思想的滲透。2、應用題的教學中,體現(xiàn)“問題情境建立模型求解驗證”的過程,引導學生從現(xiàn)實生活和具體情境中抽象出數(shù)學問題,探索問題中各種數(shù)量的意義和相互關系,以幫助學生初步形成模型思想,提高學生學習數(shù)學的興趣和應用意識。組織好學生的學習活動,鼓勵學生以獨立思考、自主探索、合作交流的方式發(fā)現(xiàn)和提出問題,分析和解決問題。3、從發(fā)展的角度評價每一位學生,填寫學生的成長記錄。五、教學過程(一)、知識網絡構建(教學說明:準備練習課前完成,上課時通過交流訂正復習主要知識點,結合學生的回答逐步構建知識體系)(二)、 具體知識點【百度視頻】播

5、放二元一次方程組的解法 HYPERLINK /show/ZgFHoFKegrghGVBVobG4UQ.html /show/ZgFHoFKegrghGVBVobG4UQ.html1二元一次方程:含有_未知數(shù),且未知項的次數(shù)為_,這樣的方程叫二元一次方程.理解時應注意:二元一次方程左右兩邊的代數(shù)式必須是整式,例如等,都不是二元一次方程;二元一次方程必須含有兩個未知數(shù);二元一次方程中的“一次”是指含有未知數(shù)的項的次數(shù),而不是某個未知數(shù)的次數(shù),如xy=2不是二元一次方程。x=ay=b2二元一次方程的解:能使二元一次方程左右兩邊的值_的_的值叫做二元一次方程的解,通常用 的形式表示.點撥:在任何一個二

6、元一次方程中,如果把其中的一個未知數(shù)任取一個數(shù),都可以通過方程求得與之對應的另一個未知數(shù)的值。因此,任何一個二元一次方程都有_解。3二元一次方程組:由_或_的_方程(即方程兩邊的代數(shù)式都是整式)組成,常用“ ”把這些方程聯(lián)合在一起;整個方程組中含有兩個_的未知數(shù),且方程組中同一未知數(shù)代表同一數(shù)量;方程組中每個方程經過整理后都是_方程,如:2x-y=1x+y=23x-y=5x=2x+2y=33x-y=12x+4y=6x=2等都是二元一次方程組。4二元一次方程組的解:二元一次方程組中兩個方程的_,叫作二元一次方程組的解注意:方程組的解滿足方程組中的每個方程,而每個方程的解不一定是方程組的解。5會檢

7、驗一對數(shù)值是不是一個二元一次方程組的解檢驗方法:把一對數(shù)值分別代入方程組的(1)、(2)兩個方程,如果這對未知數(shù)既滿足方程(1),又滿足方程(2),則它就是此方程組的解。6二元一次方程組的解法:(1)_(2)_(三)、 理解解二元一次方程組的思想(四)、 解二元一次方程組的一般步驟代入消元法(1)從方程中選一個系數(shù)比較簡單的方程,將這個方程中的未知數(shù)用另一個未知數(shù)的代數(shù)式來表示,如用 表示 ,可寫成 ;(2)將 代入另一個方程,消去 ,得到一個關于 的一元一次方程(3)解這個一元一次方程,求出 的值;(4)把求得的 的值代入 中,求出 的值,從而得到方程組的解加減消元法(1)方程組的兩個方程中

8、,如果同一個未知數(shù)的系數(shù)既不互為相反數(shù),也不相等時,可用適當?shù)臄?shù)乘以方程的兩邊,使一個未知數(shù)的系數(shù)互為相反數(shù)或相等,得到一個新的二元一次方程組;(2)把這個方程組的兩邊分別相加(或相減),消去一個未知數(shù),得到一個一元一次方程;(3)解這個一元一次方程;(4)將求出的未知數(shù)的值代入原方程組的任意一個方程中,求出另一個未知數(shù),從而得到方程組的解。點撥與指導:一般來說,當方程組中有一個未知數(shù)的系數(shù)為1(或一1)或方程組中有1個方程的常數(shù)項為0時,選用代入消元法解比較簡單;當同一個未知數(shù)的系數(shù)的絕對值相等或同一個未知數(shù)的系數(shù)成整數(shù)倍時,用加減消元法較簡單。(五)、列一次方程組解應用題列一次方程組解應用

9、題,是本章的重點,也是難點。列二元一次方程組解應用題的一般步驟:(1)審:審題,分析題中已知什么,求什么,理順各數(shù)量之間的關系; (2)設:設未知數(shù)(一般求什么,就設什么為x、y,設未知數(shù)要帶好單位名稱); (3)找:找出能夠表示應用題全部意義的兩個相等關系;(4)列:根據(jù)這兩個相等關系列出需要的代數(shù)式,進而列出兩個方程,組成方程組;(5)解:解所列方程組,得未知數(shù)的值;(6)答:檢驗所求未知數(shù)的值是否符合題意,寫出答案(包括單位名稱)。歸納為6個字:審,設,找,列,解,答。(六)、典型問題探究 (設計說明:通過對本章中幾個典型問題的探究,進一步熟悉常用的數(shù)學思想方法及解題技巧,提高學生分析解

10、決問題的能力)例1:判斷下列方程是不是二元一次方程 交流與總結:判斷一個方程是否是二元一次方程需滿足以下幾條要求含有_,未知項的次數(shù)是“_”,任何一個二元一次方程都可以化成 ,( 為已知數(shù))的形式,這種形式叫做二元一次方程的一般形式.也就是說任何一個方程只要能化成 ( ).這個方程就是二元一次方程.例2:在下列每個二元一次方程組的后面給出了x與y的一對值,判斷這對值是不是前面方程組的解? (1) (2) 交流與總結:判斷一對數(shù)是否是方程組的解的方法是:_例3:解方程組 解:(1)用加減法: (2)用代入法:【百度文庫】如何做好二元一次方程組典型應用題教學探究 HYPERLINK /view/f

11、83fcf0b6c85ec3a87c2c510.html /view/f83fcf0b6c85ec3a87c2c510.html例4、為了加強公民的節(jié)水意識,合理利用水資源。某市采用價格調控手段達到節(jié)約水的目的。規(guī)定:每戶居民每月用水不超過6時,按基本價格收費,該市某戶居民今年4、5月份的用水量和水費如下表所示,試求用水收費的兩種價格。月份用水量/水費/元48215927分析:由表格看到什么信息?4月份用水超過6,所以水費有兩部分組成21元。5月份用水超過6,所以水費有兩部分組成27元。解:設基本價格為x元/;超過6部分的按y元/.由題意知解這個方程得(教學說明:獨立完成,集體訂正)(七)、達

12、標檢測1以為解的二元一次方程組是( )A B C D2解方程組:3. 甲、乙兩位同學在解方程組時,甲看錯了第一個方程解得,乙看錯了第二個方程解得,求的值。3. 甲、乙兩地相距100千米,一艘輪船往返兩地,順流用4小時,逆流用5小時,那么這艘輪船在靜水中的航速與水速分別是多少?4某商場用36萬元購進A、B兩種商品,銷售完后共獲利6萬元,其進價和售價如下表:AB進價(元/件)12001000售價(元/件)13801200該商場購進A、B兩種商品各多少件.(設計說明:利用本組題目,開拓學生視野,滿足不同學生的發(fā)展需要。)(八)、課堂小結1本節(jié)主要學習如何將一單元的知識進行整理歸納,形成知識體系。2主

13、要用到的思想方法是符號化、模型化思想,消元化歸思想。3注意的問題:()復習時將平時易錯的知識點、感到疑難的問題做重點處理,不留尾巴。()分析問題是選擇合適的方法,是列表、用式子還是畫圖?要根據(jù)題目特點確定(3)在復習的基礎上提高,尤其是對知識方法的理解及對知識的綜合創(chuàng)新應用。(九)、布置作業(yè)課本P71 綜合練習(教學說明:及時作業(yè)是鞏固課堂學習知識的重要環(huán)節(jié))六、教學反思【點滴感想】觀摩實際問題與二元一次方程組教學的點滴感想 HYPERLINK /s/blog_6bae51090100w5sz.html /s/blog_6bae51090100w5sz.html1、復習課教學模式的探討:利用基礎題組回顧梳理主要知識點,構建知識體系-通過典型問題探究加深對主要思想方法的理解,掌握常用解題方法-采取限時訓練與開放研究相結合的方式進行鞏固與拓展練習,以保證技能技巧的形成和不同學生發(fā)展的需求.2、復習課目標的確定:首要的一點是從總體上把握本章主要內容及其間的聯(lián)系,重在回顧整理,查缺補漏;其次是綜合創(chuàng)新,基礎知識掌握了,綜合靈活地解決問題才有可能,同時問題的難易程度要適合學生的實際情況,注重思維發(fā)散性與深刻性的訓練,使不同層次的學生通過復習都得到較大的提高.七、教師個人介紹省份: 山東省 學校: 青州市東壩初

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論