等腰三角形典型例題練習(xí)(含答案)[1](共8頁)_第1頁
等腰三角形典型例題練習(xí)(含答案)[1](共8頁)_第2頁
等腰三角形典型例題練習(xí)(含答案)[1](共8頁)_第3頁
等腰三角形典型例題練習(xí)(含答案)[1](共8頁)_第4頁
等腰三角形典型例題練習(xí)(含答案)[1](共8頁)_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 等腰三角形典型例題(lt)練習(xí)一選擇題(共2小題(xio t))1如圖,C=90,AD平分(pngfn)BAC交BC于D,若BC=5cm,BD=3cm,則點(diǎn)D到AB的距離為()A5cmB3cmC2cmD不能確定2如圖,已知C是線段AB上的任意一點(diǎn)(端點(diǎn)除外),分別以AC、BC為邊并且在AB的同一側(cè)作等邊ACD和等邊BCE,連接AE交CD于M,連接BD交CE于N給出以下三個(gè)結(jié)論:AE=BD CN=CM MNAB其中正確結(jié)論的個(gè)數(shù)是()A0B1C2D3二填空題(共1小題)3如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DEAC,EFAB,F(xiàn)DBC,則DEF的面積與ABC的面積

2、之比等于_三解答題(共15小題)4在ABC中,AD是BAC的平分線,E、F分別為AB、AC上的點(diǎn),且EDF+EAF=180,求證DE=DF5在ABC中,ABC、ACB的平分線相交于點(diǎn)O,過點(diǎn)O作DEBC,分別交AB、AC于點(diǎn)D、E請(qǐng)說明DE=BD+EC6已知:如圖,D是ABC的BC邊上的中點(diǎn),DEAB,DFAC,垂足分別為E,F(xiàn),且DE=DF請(qǐng)判斷ABC是什么三角形?并說明理由7如圖,ABC是等邊三角形,BD是AC邊上的高,延長(zhǎng)BC至E,使CE=CD連接DE(1)E等于多少度?(2)DBE是什么三角形?為什么?8如圖,在ABC中,ACB=90,CD是AB邊上的高,A=30求證:AB=4BD9如

3、圖,ABC中,AB=AC,點(diǎn)D、E分別在AB、AC的延長(zhǎng)線上,且BD=CE,DE與BC相交于點(diǎn)F求證:DF=EF10已知等腰直角三角形ABC,BC是斜邊B的角平分線交AC于D,過C作CE與BD垂直且交BD延長(zhǎng)線于E,求證:BD=2CE11(2012牡丹江)如圖,ABC中AB=AC,P為底邊(d bin)BC上一點(diǎn),PEAB,PFAC,CHAB,垂足分別為E、F、H(1)求證PE+PF=CH如圖,P為BC延長(zhǎng)線上的點(diǎn)時(shí),其它條件不變,PE、PF、CH又有怎樣(znyng)的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并加以證明:(3)填空(tinkng):若A=30,ABC的面積為49,點(diǎn)P在直線BC上,且P到直

4、線AC的距離為PF,當(dāng)PF=3時(shí),則AB邊上的高CH=_點(diǎn)P到AB邊的距離PE=_(4)拓展結(jié)論,設(shè)計(jì)新題在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC若ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫出結(jié)果)12已知:如圖,AF平分BAC,BCAF于點(diǎn)E,點(diǎn)D在AF上,ED=EA,點(diǎn)P在CF上,連接PB交AF于點(diǎn)M若BAC=2MPC,請(qǐng)你判斷F與MCD的數(shù)量關(guān)系,并說明理由13如圖,已知ABC是等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F(1)線段AD與BE有什么關(guān)系?試證明你的結(jié)論(2)求BFD的度數(shù)14如圖,在ABC中,AB=BC

5、,ABC=90,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,BE=BF,連接AE、EF和CF,求證:AE=CF15已知:如圖,在OAB中,AOB=90,OA=OB,在EOF中,EOF=90,OE=OF,連接AE、BF問線段AE與BF之間有什么關(guān)系?請(qǐng)說明理由等腰三角形典型(dinxng)例題練習(xí)參考答案與試題(sht)解析一選擇題(共2小題(xio t))1如圖,C=90,AD平分BAC交BC于D,若BC=5cm,BD=3cm,則點(diǎn)D到AB的距離為()A5cmB3cmC2cmD不能確定考點(diǎn):角平分線的性質(zhì)1418944分析:由已知條件進(jìn)行思考,結(jié)合利用角平分線的性質(zhì)可得點(diǎn)D到AB的距離等于D到AC的距

6、離即CD的長(zhǎng),問題可解解答:解:C=90,AD平分BAC交BC于DD到AB的距離即為CD長(zhǎng)CD=53=2故選C2如圖,已知C是線段AB上的任意一點(diǎn)(端點(diǎn)除外),分別以AC、BC為邊并且在AB的同一側(cè)作等邊ACD和等邊BCE,連接AE交CD于M,連接BD交CE于N給出以下三個(gè)結(jié)論:AE=BDCN=CMMNAB其中正確結(jié)論的個(gè)數(shù)是()A0B1C2D3考點(diǎn):平行線分線段成比例;全等三角形的判定與性質(zhì);等邊三角形的性質(zhì)1418944分析:由ACD和BCE是等邊三角形,根據(jù)SAS易證得ACEDCB,即可得正確;由ACEDCB,可得EAC=NDC,又由ACD=MCN=60,利用ASA,可證得ACMDCN,

7、即可得正確;又可證得CMN是等邊三角形,即可證得正確解答:解:ACD和BCE是等邊三角形,ACD=BCE=60,AC=DC,EC=BC,ACD+DCE=DCE+ECB,即ACE=DCB,ACEDCB(SAS),AE=BD,故正確;EAC=NDC,ACD=BCE=60,DCE=60,ACD=MCN=60,AC=DC,ACMDCN(ASA),CM=CN,故正確;又MCN=180MCANCB=1806060=60,CMN是等邊三角形,NMC=ACD=60,MNAB,故正確故選D二填空題(共1小題)3如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DEAC,EFAB,F(xiàn)DBC,則DE

8、F的面積與ABC的面積之比等于1:3考點(diǎn):相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì)1418944分析:首先根據(jù)題意求得:DFE=FED=EDF=60,即可證得DEF是正三角形,又由直角三角形中,30所對(duì)的直角邊是斜邊的一半,得到邊的關(guān)系,即可求得DF:AB=1:,又由相似三角形的面積比等于相似比的平方,即可求得結(jié)果解答:解:ABC是正三角形,B=C=A=60,DEAC,EFAB,F(xiàn)DBC,AFE=CED=BDF=90,BFD=CDE=AEF=30,DFE=FED=EDF=60,DEF是正三角形,BD:DF=1:,BD:AB=1:3,DEFABC,=,DF:AB=1:,D

9、EF的面積與ABC的面積之比等于1:3故答案為:1:3三解答題(共15小題)4在ABC中,AD是BAC的平分線,E、F分別為AB、AC上的點(diǎn),且EDF+EAF=180,求證DE=DF考點(diǎn):全等三角形的判定與性質(zhì);角平分線的定義1418944分析:過D作DMAB,于M,DNAC于N,根據(jù)角平分線性質(zhì)求出DN=DM,根據(jù)四邊形的內(nèi)角和定理和平角定義求出AED=CFD,根據(jù)全等三角形的判定AAS推出EMDFND即可解答:證明:過D作DMAB,于M,DNAC于N,即EMD=FND=90,AD平分BAC,DMAB,DNAC,DM=DN(角平分線性質(zhì)),DME=DNF=90,EAF+EDF=180,MED

10、+AFD=360180=180,AFD+NFD=180,MED=NFD,在EMD和FND中,EMDFND,DE=DF5在ABC中,ABC、ACB的平分線相交于點(diǎn)O,過點(diǎn)O作DEBC,分別(fnbi)交AB、AC于點(diǎn)D、E請(qǐng)說明DE=BD+EC考點(diǎn):等腰三角形的判定與性質(zhì);平行線的性質(zhì)1418944分析:根據(jù)OB和OC分別平分ABC和ACB,和DEBC,利用兩直線平行,內(nèi)錯(cuò)角相等和等量代換,求證出DB=DO,OE=EC然后即可得出答案解答:解:在ABC中,OB和OC分別平分ABC和ACB,DBO=OBC,ECO=OCB,DEBC,DOB=OBC=DBO,EOC=OCB=ECO,DB=DO,OE=

11、EC,DE=DO+OE,DE=BD+EC6已知:如圖,D是ABC的BC邊上的中點(diǎn),DEAB,DFAC,垂足分別為E,F(xiàn),且DE=DF請(qǐng)判斷(pndun)ABC是什么三角形?并說明理由考點(diǎn):等腰三角形的判定;全等三角形的判定與性質(zhì)1418944分析:用(HL)證明EBDFCD,從而得出EBD=FCD,即可證明ABC是等腰三角形解答:ABC是等腰三角形證明:連接AD,DEAB,DFAC,BED=CFD=90,且DE=DF,D是ABC的BC邊上的中點(diǎn),BD=DC,RtEBDRtFCD(HL),EBD=FCD,ABC是等腰三角形7如圖,ABC是等邊三角形,BD是AC邊上(bin shn)的高,延長(zhǎng)BC

12、至E,使CE=CD連接DE(1)E等于多少度?(2)DBE是什么三角形?為什么?考點(diǎn):等邊三角形的性質(zhì);等腰三角形的判定1418944分析:(1)由題意可推出ACB=60,E=CDE,然后根據(jù)三角形外角的性質(zhì)可知:ACB=E+CDE,即可推出E的度數(shù);(2)根據(jù)等邊三角形的性質(zhì)可知,BD不但為AC邊上的高,也是ABC的角平分線,即得:DBC=30,然后再結(jié)合(1)中求得的結(jié)論,即可推出DBE是等腰三角形解答:解:(1)ABC是等邊三角形,ACB=60,CD=CE,E=CDE,ACB=E+CDE,(2)ABC是等邊三角形,BDAC,ABC=60,E=30,DBC=E,DBE是等腰三角形8如圖,在

13、ABC中,ACB=90,CD是AB邊上的高,A=30求證:AB=4BD考點(diǎn):含30度角的直角三角形1418944分析:由ABC中,ACB=90,A=30可以推出AB=2BC,同理可得BC=2BD,則結(jié)論即可證明解答:解:ACB=90,A=30,AB=2BC,B=60又CDAB,DCB=30,BC=2BDAB=2BC=4BD9如圖,ABC中,AB=AC,點(diǎn)D、E分別在AB、AC的延長(zhǎng)線上,且BD=CE,DE與BC相交于點(diǎn)F求證:DF=EF考點(diǎn):全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)1418944分析:過D點(diǎn)作DGAE交BC于G點(diǎn),由平行線的性質(zhì)得1=2,4=3,再根據(jù)等腰三角形的性質(zhì)可得B=2

14、,則B=1,于是有DB=DG,根據(jù)全等三角形的判定易得DFGEFC,即可得到結(jié)論解答:證明:過D點(diǎn)作DGAE交BC于G點(diǎn),如圖,1=2,4=3,AB=AC,B=2,B=1,DB=DG,而BD=CE,DG=CE,在DFG和EFC中,DFGEFC,DF=EF10已知等腰直角三角形ABC,BC是斜邊B的角平分線交AC于D,過C作CE與BD垂直(chuzh)且交BD延長(zhǎng)線于E,求證(qizhng):BD=2CE考點(diǎn):全等三角形的判定與性質(zhì)1418944分析:延長(zhǎng)CE,BA交于一點(diǎn)F,由已知條件可證得BFE全BEC,所以FE=EC,即CF=2CE,再通過證明ADBFAC可得FC=BD,所以BD=2CE解

15、答:證明:如圖,分別延長(zhǎng)CE,BA交于一點(diǎn)FBEEC,F(xiàn)EB=CEB=90,BE平分ABC,F(xiàn)BE=CBE,又BE=BE,BFEBCE (ASA)FE=CECF=2CEAB=AC,BAC=90,ABD+ADB=90,ADB=EDC,ABD+EDC=90又DEC=90,EDC+ECD=90,F(xiàn)CA=DBC=ABDADBAFCFC=DB,BD=2EC11(2012牡丹江)如圖,ABC中AB=AC,P為底邊BC上一點(diǎn),PEAB,PFAC,CHAB,垂足(chu z)分別為E、F、H易證PE+PF=CH證明過程如下:如圖,連接APPEAB,PFAC,CHAB,SABP=ABPE,SACP=ACPF,S

16、ABC=ABCH又SABP+SACP=SABC,ABPE+ACPF=ABCHAB=AC,PE+PF=CH(1)如圖,P為BC延長(zhǎng)線上的點(diǎn)時(shí),其它條件不變,PE、PF、CH又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并加以證明:(2)填空:若A=30,ABC的面積為49,點(diǎn)P在直線BC上,且P到直線AC的距離為PF,當(dāng)PF=3時(shí),則AB邊上的高CH=7點(diǎn)P到AB邊的距離PE=4或10考點(diǎn):等腰三角形的性質(zhì);三角形的面積1418944分析:(1)連接AP先根據(jù)三角形的面積公式分別表示出SABP,SACP,SABC,再由SABP=SACP+SABC即可得出PE=PF+PH;(2)先根據(jù)直角三角形的性質(zhì)得出A

17、C=2CH,再由ABC的面積為49,求出CH=7,由于CHPF,則可分兩種情況進(jìn)行討論:P為底邊BC上一點(diǎn),運(yùn)用結(jié)論P(yáng)E+PF=CH;P為BC延長(zhǎng)線上的點(diǎn)時(shí),運(yùn)用結(jié)論P(yáng)E=PF+CH解答:解:(1)如圖,PE=PF+CH證明如下:PEAB,PFAC,CHAB,SABP=ABPE,SACP=ACPF,SABC=ABCH,SABP=SACP+SABC,ABPE=ACPF+ABCH,又AB=AC,PE=PF+CH;(2)在ACH中,A=30,AC=2CHSABC=ABCH,AB=AC,2CHCH=49,CH=7分兩種情況:P為底邊BC上一點(diǎn),如圖PE+PF=CH,PE=CHPF=73=4;P為BC延

18、長(zhǎng)線上的點(diǎn)時(shí),如圖PE=PF+CH,PE=3+7=10故答案為7;4或1012數(shù)學(xué)課上,李老師出示(ch sh)了如下的題目:“在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,如圖,試確定(qudng)線段AE與DB的大小關(guān)系,并說明理由”小敏與同桌小聰討論后,進(jìn)行了如下(rxi)解答:(1)特殊情況,探索結(jié)論當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與DB的大小關(guān)系,請(qǐng)你直接寫出結(jié)論:AE=DB(填“”,“”或“=”) (2)特例啟發(fā),解答題目解:題目中,AE與DB的大小關(guān)系是:AE=DB(填“”,“”或“=”)理由如下:如圖2,過點(diǎn)E作EFBC,交AC于點(diǎn)F(請(qǐng)你完

19、成以下解答過程)(3)拓展結(jié)論,設(shè)計(jì)新題在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC若ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫出結(jié)果)考點(diǎn):等邊三角形的判定與性質(zhì);三角形的外角性質(zhì);全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)1418944分析:(1)根據(jù)等邊三角形性質(zhì)和等腰三角形的性質(zhì)求出D=ECB=30,求出DEB=30,求出BD=BE即可;(2)過E作EFBC交AC于F,求出等邊三角形AEF,證DEB和ECF全等,求出BD=EF即可;(3)當(dāng)D在CB的延長(zhǎng)線上,E在AB的延長(zhǎng)線式時(shí),由(2)求出CD=3,當(dāng)E在BA的延長(zhǎng)線上,D在BC的延長(zhǎng)線上時(shí),求出CD

20、=1解答:解:(1)故答案為:=(2)過E作EFBC交AC于F,等邊三角形ABC,ABC=ACB=A=60,AB=AC=BC,AEF=ABC=60,AFE=ACB=60,即AEF=AFE=A=60,AEF是等邊三角形,AE=EF=AF,ABC=ACB=AFE=60,DBE=EFC=120,D+BED=FCE+ECD=60,DE=EC,D=ECD,BED=ECF,在DEB和ECF中,DEBECF,BD=EF=AE,即AE=BD,故答案為:=(3)解:CD=1或3,理由是:分為兩種情況:如圖1過A作AMBC于M,過E作ENBC于N,則AMEM,ABC是等邊三角形,AB=BC=AC=1,AMBC,B

21、M=CM=BC=,DE=CE,ENBC,CD=2CN,AMEN,AMBENB,=,=,BN=,CN=1+=,CD=2CN=3;如圖2,作AMBC于M,過E作ENBC于N,則AMEM,ABC是等邊三角形,AB=BC=AC=1,AMBC,BM=CM=BC=,DE=CE,ENBC,CD=2CN,AMEN,=,=,MN=1,CN=1=,CD=2CN=113已知:如圖,AF平分BAC,BCAF于點(diǎn)E,點(diǎn)D在AF上,ED=EA,點(diǎn)P在CF上,連接PB交AF于點(diǎn)M若BAC=2MPC,請(qǐng)你判斷F與MCD的數(shù)量關(guān)系,并說明理由考點(diǎn):全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)1418944分析:根據(jù)全等三角形的性質(zhì)

22、和判定和線段垂直平分線性質(zhì)求出AB=AC=CD,推出CDA=CAD=CPM,求出MPF=CDM,PMF=BMA=CMD,在DCM和PMF中根據(jù)三角形的內(nèi)角和定理求出即可解答:解:F=MCD,理由是:AF平分BAC,BCAF,CAE=BAE,AEC=AEB=90,在ACE和ABE中,ACEABE(ASA)AB=AC,CAE=CDEAM是BC的垂直平分線,CM=BM,CE=BE,CMA=BMA,AE=ED,CEAD,AC=CD,CAD=CDA,BAC=2MPC,又BAC=2CAD,MPC=CAD,MPC=CDA,MPF=CDM,MPF=CDM(等角的補(bǔ)角相等),DCM+CMD+CDM=180,F(xiàn)+

23、MPF+PMF=180,又PMF=BMA=CMD,MCD=F14如圖,已知ABC是等邊三角形,點(diǎn)D、E分別在BC、AC邊上(bin shn),且AE=CD,AD與BE相交于點(diǎn)F(1)線段AD與BE有什么(shn me)關(guān)系?試證明你的結(jié)論(2)求BFD的度數(shù)(d shu)考點(diǎn):等邊三角形的性質(zhì);全等三角形的判定與性質(zhì)1418944分析:(1)根據(jù)等邊三角形的性質(zhì)可知BAC=C=60,AB=CA,結(jié)合AE=CD,可證明ABECAD,從而證得結(jié)論;(2)根據(jù)BFD=ABE+BAD,ABE=CAD,可知BFD=CAD+BAD=BAC=60解答:(1)證明:ABC為等邊三角形,BAC=C=60,AB=

24、CA在ABE和CAD中,ABECADAD=BE(2)解:BFD=ABE+BAD,又ABECAD,ABE=CADBFD=CAD+BAD=BAC=6015如圖,在ABC中,AB=BC,ABC=90,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,BE=BF,連接AE、EF和CF,求證:AE=CF考點(diǎn):全等三角形的判定與性質(zhì)1418944分析:根據(jù)已知利用SAS即可判定ABECBF,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得到AE=CF解答:證明:ABC=90,ABE=CBF=90,又AB=BC,BE=BF,ABECBF(SAS)AE=CF16已知:如圖,在OAB中,AOB=90,OA=OB,在EOF中,EOF=90,O

25、E=OF,連接AE、BF問線段AE與BF之間有什么關(guān)系?請(qǐng)說明理由考點(diǎn):全等三角形的判定與性質(zhì);等腰直角三角形1418944分析:可以把要證明相等的線段AE,CF放到AEO,BFO中考慮全等的條件,由兩個(gè)等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個(gè)夾角都是直角減去BOE的結(jié)果,當(dāng)然相等了,由此可以證明AEOBFO;延長(zhǎng)BF交AE于D,交OA于C,可證明BDA=AOB=90,則AEBF解答:解:AE與BF相等且垂直,理由:在AEO與BFO中,RtOAB與RtOEF等腰直角三角形,AO=OB,OE=OF,AOE=90BOE=BOF,AEOBFO,AE=BF延長(zhǎng)BF交AE于D,交OA于C,則ACD=BCO,由(1)知OAE=OBF,BDA=AOB=90,AEBF17(2006郴州)如圖,在ABC中,AB=AC,D是BC上任意一點(diǎn),過D分別向A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論