青海省海北市重點2022年高考數(shù)學全真模擬密押卷含解析_第1頁
青海省海北市重點2022年高考數(shù)學全真模擬密押卷含解析_第2頁
青海省海北市重點2022年高考數(shù)學全真模擬密押卷含解析_第3頁
青海省海北市重點2022年高考數(shù)學全真模擬密押卷含解析_第4頁
青海省海北市重點2022年高考數(shù)學全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若,則“”是 “”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件2如圖,圓的半徑為,是圓上的定點,是圓上的動點, 點關于直線的對稱點為,角的始邊為射線,

2、終邊為射線,將表示為的函數(shù),則在上的圖像大致為( )ABCD3已知復數(shù)滿足,則( )ABCD4已知類產品共兩件,類產品共三件,混放在一起,現(xiàn)需要通過檢測將其區(qū)分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為( )ABCD5已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內切球所得截面面積為( )ABCD6在中所對的邊分別是,若,則( )A37B13CD7直線x-3y+3=0經(jīng)過橢圓x2a2+y2b2=1ab0的左焦點F,交橢圓于A,B兩點,交y軸于C點,若FC=2CA,則該橢圓的離心率是()

3、A3-1B3-12C22-2D2-18體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數(shù)是( )A3B4C5D69已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則( )A2或B3或C4或D5或10一個空間幾何體的正視圖是長為4,寬為的長方形,側視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為( )ABCD11復數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)( )A3BCD12已知復數(shù),其中為虛數(shù)單位,則( )ABC2D二、填空題:本

4、題共4小題,每小題5分,共20分。13為激發(fā)學生團結協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽每兩班之間只比賽1場,目前()班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場則目前(五)班已經(jīng)參加比賽的場次為_14已知函數(shù),則下列結論中正確的是_.是周期函數(shù);的對稱軸方程為,;在區(qū)間上為增函數(shù);方程在區(qū)間有6個根.15在九章算術中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬如圖,若四棱錐為陽馬,側棱底面,且,設該陽馬的外接球半徑為,內切球半徑為,則_16的角所對的邊分別為,且,若,則的值為_.三、解答題:共70分。解答應寫出文字說明、證明

5、過程或演算步驟。17(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.18(12分)橢圓:()的離心率為,它的四個頂點構成的四邊形面積為.(1)求橢圓的方程;(2)設是直線上任意一點,過點作圓的兩條切線,切點分別為,求證:直線恒過一個定點.19(12分)如圖,在中,已知,為線段的中點,是由繞直線旋轉而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.20(12分)新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的

6、了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.21(12分)已知函數(shù)()求在點處的切線方程;()求證:在上存在唯一的極大值;()直接寫出函數(shù)在上的零點個

7、數(shù)22(10分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,點,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】本題根據(jù)基本不等式,結合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎知識、邏輯推理能力的考查.【詳解】當時,則當時,有,解得,充分性成立;當時,滿足,但此時,必要性不成立,綜上所述

8、,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導致判斷失誤;二是不能靈活的應用“賦值法”,通過特取的值,從假設情況下推出合理結果或矛盾結果.2B【解析】根據(jù)圖象分析變化過程中在關鍵位置及部分區(qū)域,即可排除錯誤選項,得到函數(shù)圖象,即可求解.【詳解】由題意,當時,P與A重合,則與B重合,所以,故排除C,D選項;當時,由圖象可知選B.故選:B【點睛】本題主要考查三角函數(shù)的圖像與性質,正確表示函數(shù)的表達式是解題的關鍵,屬于中檔題.3A【解析】由復數(shù)的運算法則計算【詳解】因為,所以故選:A【點睛】本題考查復數(shù)的運算屬于簡單題4D【解析】根據(jù)分步計數(shù)原理,由古典概型概率公式

9、可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【點睛】本題考查了分步乘法計數(shù)原理的應用,古典概型概率計算公式的應用,屬于基礎題.5A【解析】根據(jù)球的特點可知截面是一個圓,根據(jù)等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內切球球心為,到平面的距離為,截面圓的半徑為,因為內切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又

10、因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.6D【解析】直接根據(jù)余弦定理求解即可【詳解】解:,故選:D【點睛】本題主要考查余弦定理解三角形,屬于基礎題7A【解析】由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為F(-3,0),且a2-b2=3,再由FC=2CA,求得A32,32,代入橢圓的方程,求得a2=33+62,進而利用橢圓的離心率的計算公式,即可求解.【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左

11、焦點F,令y=0,解得x=3,所以c=3,即橢圓的左焦點為F(-3,0),且a2-b2=3 直線交y軸于C(0,1),所以,OF=3,OC=1,FC=2,因為FC=2CA,所以FA=3,所以A32,32,又由點A在橢圓上,得3a2+9b2=4 由,可得4a2-24a2+9=0,解得a2=33+62,所以e2=c2a2=633+6=4-23=3-12,所以橢圓的離心率為e=3-1.故選A.【點睛】本題考查了橢圓的幾何性質離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:求出a,c ,代入公式e=ca;只需要根據(jù)一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的

12、方程,即可得e的值(范圍)8B【解析】通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“”“”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.9C【解析】先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,即,所以直線的方程為.當直線的方程為,聯(lián)立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋

13、物線的位置關系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.10B【解析】由三視圖確定原幾何體是正三棱柱,由此可求得體積【詳解】由題意原幾何體是正三棱柱,故選:B【點睛】本題考查三視圖,考查棱柱的體積解題關鍵是由三視圖不愿出原幾何體11B【解析】利用乘法運算化簡復數(shù)即可得到答案.【詳解】由已知,所以,解得.故選:B【點睛】本題考查復數(shù)的概念及復數(shù)的乘法運算,考查學生的基本計算能力,是一道容易題.12D【解析】把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了

14、復數(shù)模的求法,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。132【解析】根據(jù)比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結合分析問題的能力,屬于基礎題型.14【解析】由函數(shù),對選項逐個驗證即得答案.【詳解】函數(shù),是周期函數(shù),最小正周期為,故正確;當或時,有最大值或最小值,此時或,即或,即.的對稱軸方程為,故正確;當時,此時在上單調遞減,在上單調遞增,在區(qū)間上不是增函數(shù),故錯誤;作出函數(shù)的部分圖象,如圖所示方程在區(qū)間有6個根,故正確.故答案為:.【點睛】本題考查三角恒等變換,考查

15、三角函數(shù)的性質,屬于中檔題.15【解析】該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內切球在側面內的正視圖是的內切圓,從而內切球半徑為,由此能求出【詳解】四棱錐為陽馬,側棱底面,且,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,側棱底面,且底面為正方形,內切球在側面內的正視圖是的內切圓,內切球半徑為,故故答案為【點睛】本題考查了幾何體外接球和內切球的相關問題,補形法的運用,以及數(shù)學文化,考查了空間想象能力,是中檔題解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補形法(構

16、造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.16【解析】先利用余弦定理求出,再用正弦定理求出并把轉化為與邊有關的等式,結合可求的值.【詳解】因為,故,因為,所以.由正弦定理可得三角形外接圓的半徑滿足,所以即.因為,解得或(舍).故答案為:.【點睛】本題考查正弦定理、余弦定理在解三角形中的應用,注意結合求解目標對所得的方程組變形整合后整體求解,本題屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)證明見解析(2)【

17、解析】(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可由為菱形可得,連接和與的交點,由等腰三角形性質可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值【詳解】(1)如圖,設與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,兩兩垂直.如圖以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.不妨設,則,則,設為平面的法向量,則即可取,設為平面的法

18、向量,則即可取,所以.所以二面角的余弦值為0.【點睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理的應用,以及利用向量法求二面角,意在考查學生的直觀想象能力,邏輯推理能力和數(shù)學運算能力,屬于基礎題18(1);(2)證明見解析.【解析】(1)根據(jù)橢圓的基本性質列出方程組,即可得出橢圓方程;(2)設點,由,結合斜率公式化簡得出,即,滿足,由的任意性,得出直線恒過一個定點.【詳解】(1)依題意得,解得即橢圓:;(2)設點,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,即直線恒過一個定點.【點睛】本題主要考查了求橢圓的方程,直線過定點問題,屬于中檔題.19 (1) ;(2).【解析】(

19、1)平面平面,建立坐標系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1) 如圖,以為原點,在平面內垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2) 設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角, 平面與平面垂直的判定,二面角的平面角及求法,難度一般.20(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián);(3)分布列見解析,.【解析】(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論