廣東省揭陽市第一中學(xué)2022學(xué)年高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第1頁
廣東省揭陽市第一中學(xué)2022學(xué)年高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第2頁
廣東省揭陽市第一中學(xué)2022學(xué)年高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第3頁
廣東省揭陽市第一中學(xué)2022學(xué)年高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第4頁
廣東省揭陽市第一中學(xué)2022學(xué)年高三第五次模擬考試數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2022學(xué)年高考數(shù)學(xué)模擬測試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合,則等于( )ABCD2某校在高一年級進(jìn)行了數(shù)學(xué)競賽(總分100分),下表為高一一班40名同學(xué)的數(shù)學(xué)競賽成績:55575961686462598088989560738874867

2、7799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運行相應(yīng)的程序,輸出,的值,則( )A6B8C10D123在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有( )A60種B70種C75種D150種4執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( )ABCD5已知雙曲線:,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為( )ABCD6在正項等比數(shù)列an中,a5-a1=15,a4-a2 =6,則a3

3、=( )A2B4CD87已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標(biāo)原點若,則直線與的斜率之積為( )ABCD8已知復(fù)數(shù),若,則的值為( )A1BCD9某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為( )AB6CD10已知函數(shù)且,則實數(shù)的取值范圍是( )ABCD11已知集合,則集合真子集的個數(shù)為( )A3B4C7D812執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為

4、時,k的值為_.14在長方體中,則異面直線與所成角的余弦值為( )ABCD15已知為正實數(shù),且,則的最小值為_.16若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每一位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計結(jié)果如下表所示組別頻數(shù) (1)已知此次問卷調(diào)查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表),請利用正態(tài)分布的知識求;(2)在(1)的條件下,環(huán)保部門為此次參加問卷調(diào)查

5、的市民制定如下獎勵方案.()得分不低于的可以獲贈次隨機(jī)話費,得分低于的可以獲贈次隨機(jī)話費;()每次贈送的隨機(jī)話費和相應(yīng)的概率如下表.贈送的隨機(jī)話費/元概率現(xiàn)市民甲要參加此次問卷調(diào)查,記為該市民參加問卷調(diào)查獲贈的話費,求的分布列及數(shù)學(xué)期望附:,若,則,.18(12分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.19(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.20(12分

6、)已知函數(shù),.(1)若曲線在點處的切線方程為,求,;(2)當(dāng)時,求實數(shù)的取值范圍.21(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習(xí)慣、社會心理健康、公共衛(wèi)生設(shè)施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況

7、類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,的大小關(guān)系.22(10分)在平面直角

8、坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標(biāo)為,求的面積.2022學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】解不等式確定集合,然后由補集、并集定義求解【題目詳解】由題意或,故選:B.【答案點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎(chǔ)題型2、D【答案解析】根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求

9、得的值.【題目詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,所以.故選:D【答案點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.3、C【答案解析】根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案【題目詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C【答案點睛】本題考查排列組合的應(yīng)用,涉及分步計數(shù)原理問題,屬于基礎(chǔ)題4、D【答案解析】循環(huán)依次為 直至結(jié)束

10、循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.5、D【答案解析】由|AF2|3|BF2|,可得.設(shè)直線l的方程xmy+,m0,設(shè),即y13y2,聯(lián)立直線l與曲線C,得y1+y2-,y1y2,求出m的值即可求出直線的斜率.【題目詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點,則F2(,0),設(shè)直線l的方程xmy+,m0,雙曲線的漸近線方程為x2y,m2,設(shè)A(x1,y1),B(x2,y2),且y10,由|A

11、F2|3|BF2|,y13y2由,得(2m)24(m24)0,即m2+40恒成立,y1+y2,y1y2,聯(lián)立得,聯(lián)立得,即:,解得:,直線的斜率為,故選D【答案點睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運用,考查向量知識,屬于中檔題6、B【答案解析】根據(jù)題意得到,解得答案.【題目詳解】,解得或(舍去).故.故選:.【答案點睛】本題考查了等比數(shù)列的計算,意在考查學(xué)生的計算能力.7、A【答案解析】設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x21再寫出OA,OB所在直線的斜率,作積得答案【題目詳解】解:設(shè)A(),B(),由拋物線C:x21y,得,則y,由,可得,即x

12、1x21又,故選:A點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點,先設(shè)A,B,再求切線PA,PB方程,求點P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點P的坐標(biāo),計算量就大一些.8、D【答案解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實數(shù)的方程可得:.本題選擇D選項.9、D【答案解析】根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【題目詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D

13、【答案點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.10、B【答案解析】構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【題目詳解】構(gòu)造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【答案點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.11、C【答案解析】解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【題目詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【答案點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)

14、題.12、C【答案解析】由程序語言依次計算,直到時輸出即可【題目詳解】程序的運行過程為當(dāng)n=2時,時,此時輸出.故選:C【答案點睛】本題考查由程序框圖計算輸出結(jié)果,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【題目詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.點Q到底面的距離與到點P的距離之比為正常數(shù)k,則,動點Q的軌跡是拋物線,即則.二面角的平面角的余弦值為解得:().故答案為:

15、.【答案點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.14、C【答案解析】根據(jù)確定是異面直線與所成的角,利用余弦定理計算得到答案.【題目詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【答案點睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計算能力.15、【答案解析】,所以有,再利用基本不等式求最值即可.【題目詳解】由已知,所以,當(dāng)且僅當(dāng),即時,等號成立.故答案為:【答案點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.16、【答案解析】根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過

16、定點,直線繞定點旋轉(zhuǎn)與可行域有交點即可,再結(jié)合圖象利用斜率求解.【題目詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當(dāng)時,滿足條件,當(dāng)時,直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【答案點睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運算求解的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【答案解析】(1)根據(jù)題中所給的統(tǒng)計表,利用公式計算出平均數(shù)的值,再利用數(shù)據(jù)之間的關(guān)系將、表示為,利用題中所給

17、數(shù)據(jù),以及正態(tài)分布的概率密度曲線的對稱性,求出對應(yīng)的概率;(2)根據(jù)題意,高于平均數(shù)和低于平均數(shù)的概率各為,再結(jié)合得元、元的概率,分析得出話費的可能數(shù)據(jù)都有哪些,再利用公式求得對應(yīng)的概率,進(jìn)而得出分布列,之后利用離散型隨機(jī)變量的分布列求出其數(shù)學(xué)期望.【題目詳解】(1)由題意可得,易知,;(2)根據(jù)題意,可得出隨機(jī)變量的可能取值有、元,.所以,隨機(jī)變量的分布列如下表所示:所以,隨機(jī)變量的數(shù)學(xué)期望為.【答案點睛】本題考查概率的計算,涉及到平均數(shù)的求法、正態(tài)分布概率的計算以及離散型隨機(jī)變量分布列及其數(shù)學(xué)期望,在解題時要弄清楚隨機(jī)變量所滿足的分布列類型,結(jié)合相應(yīng)公式計算對應(yīng)事件的概率,考查計算能力,屬

18、于中等題.18、(1)函數(shù)與的圖象在區(qū)間上有交點;證明見解析;(2)且;【答案解析】(1)令,結(jié)合函數(shù)零點的判定定理判斷即可;設(shè)切點橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可【題目詳解】解:(1)當(dāng)時,函數(shù),令,則,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點,故函數(shù)與的圖象在區(qū)間上有交點;證明:假設(shè)存在,使得直線是曲線的切線,切點橫坐標(biāo)為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時,故方程有唯一解,又,故不存在,即證;(2)由得,令,

19、則,當(dāng)時,遞減,故當(dāng)時,遞增,當(dāng)時,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,當(dāng)時,故在遞減,可得當(dāng)時,當(dāng)時,易證,令,令,故,則,故在遞增,則,即時,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值由(1)知,故在遞減,在遞增,故時,遞增,不合題意;當(dāng)時,當(dāng),時,遞減,當(dāng)時,遞增,故在處取極小值,符合題意,綜上,實數(shù)的范圍是且【答案點睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題19、(1)見解析;(2).【答案解析】(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(2

20、)以點為坐標(biāo)原點,、所在直線分別為、軸建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值,進(jìn)而可求得其正弦值.【題目詳解】(1)取中點,連接、,且,四邊形為平行四邊形,且,、分別為、中點,且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,平面,平面,平面;(2)以點為坐標(biāo)原點,、所在直線分別為、軸建立如下圖所示的空間直角坐標(biāo)系,則、,設(shè)平面的法向量為,由,得,取,則,設(shè)平面的法向量為,由,得,取,則,因此,二面角的正弦值為.【答案點睛】本題考查線面平行的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.20、(1);(2)

21、【答案解析】(1)對函數(shù)求導(dǎo),運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【題目詳解】(1)由題得,因為在點與相切所以,(2)由得,令,只需,設(shè)(),當(dāng)時,在時為增函數(shù),所以,舍;當(dāng)時,開口向上,對稱軸為,所以在時為增函數(shù),所以,舍;當(dāng)時,二次函數(shù)開口向下,且,所以在時有一個零點,在時,在時,當(dāng)即時,在小于零,所以在時為減函數(shù),所以,符合題意;當(dāng)即時,在大于零,所以在時為增函數(shù),所以,舍.綜上所述:實數(shù)的取值范圍為【答案點睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題處理函數(shù)單調(diào)性問題時,注意利用導(dǎo)函數(shù)的正負(fù),特別是已知單調(diào)性問題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時分析好單調(diào)性再求極值,從而求出函數(shù)最值21、(1)(2)(3)【答案解析】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論