高中總復(fù)習(xí)文科數(shù)學(xué)配人教A版(老高考舊教材)ppt配套PPT課件高考大題增分專項(xiàng)六 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例_第1頁
高中總復(fù)習(xí)文科數(shù)學(xué)配人教A版(老高考舊教材)ppt配套PPT課件高考大題增分專項(xiàng)六 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例_第2頁
高中總復(fù)習(xí)文科數(shù)學(xué)配人教A版(老高考舊教材)ppt配套PPT課件高考大題增分專項(xiàng)六 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例_第3頁
高中總復(fù)習(xí)文科數(shù)學(xué)配人教A版(老高考舊教材)ppt配套PPT課件高考大題增分專項(xiàng)六 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例_第4頁
高中總復(fù)習(xí)文科數(shù)學(xué)配人教A版(老高考舊教材)ppt配套PPT課件高考大題增分專項(xiàng)六 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、高考大題增分專項(xiàng)六高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例-2-從近五年的高考試題來看,在高考的解答題中,對概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例的考查主要有三個方面:一是統(tǒng)計(jì)與統(tǒng)計(jì)案例,以實(shí)際生活中的事例為背景,通過對相關(guān)數(shù)據(jù)的統(tǒng)計(jì)分析、抽象概括,作出估計(jì)、判斷,其中回歸分析、獨(dú)立性檢驗(yàn)、用樣本的數(shù)據(jù)特征估計(jì)總體的數(shù)據(jù)特征是考查重點(diǎn),常與抽樣方法、莖葉圖、頻率分布直方圖、概率等知識交匯考查,考查學(xué)生數(shù)據(jù)處理能力;二是統(tǒng)計(jì)與概率綜合,以現(xiàn)實(shí)生活為背景,利用頻率估計(jì)概率,常與抽樣方法、莖葉圖、頻率分布直方圖、概率等知識交匯考查;三是古典概型的綜合應(yīng)用,以現(xiàn)實(shí)生活為背景,求某些事件發(fā)生的概率,常與抽樣方法、莖葉圖等統(tǒng)計(jì)知識交匯

2、考查.-3-題型一題型二題型三題型四題型五已知樣本的頻率分布表或樣本的頻率分布直方圖,求樣本的中位數(shù)、平均數(shù)、方差、標(biāo)準(zhǔn)差等數(shù)字特征.由于每個樣本的具體值不知道,只知道各區(qū)間上的端點(diǎn)值,這時(shí)取區(qū)間兩端數(shù)據(jù)的平均值作為樣本的具體值,求樣本的數(shù)字特征.-4-題型一題型二題型三題型四題型五例1我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查.通過抽樣,獲得了某年100名居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照0,0.5),0.5,1),4,4.5分成9組,制成了如圖所示的頻率分布直方圖.-5-題型一題型二題型三題型四題型五(1)求直方圖中a的值;(2)設(shè)該市有30

3、萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由;(3)估計(jì)居民月均用水量的中位數(shù).解:(1)由頻率分布直方圖,可知月均用水量在0,0.5)的頻率為0.080.5=0.04.同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5)等組的頻率分別為0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5a+0.5a,解得a=0.30.-6-題型一題型二題型三題型四題型五(2)由(1),100名居民月均用水量不低于3噸的頻率為0.06+0.04+0.02=0.12.

4、由以上樣本的頻率分布,可以估計(jì)30萬居民中月均用水量不低于3噸的人數(shù)為300 0000.12=36 000.(3)設(shè)中位數(shù)為x噸.因?yàn)榍?組的頻率之和為0.04+0.08+0.15+0.21+0.25=0.730.5,而前4組的頻率之和為0.04+0.08+0.15+0.21=0.480.5,所以2x2.5.由0.50(x-2)=0.5-0.48,解得x=2.04.故可估計(jì)居民月均用水量的中位數(shù)為2.04噸.-7-題型一題型二題型三題型四題型五對點(diǎn)訓(xùn)練1從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:(1)作出這些數(shù)據(jù)的頻率分布直方圖; -8-題

5、型一題型二題型三題型四題型五(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?-9-題型一題型二題型三題型四題型五解:(1) -10-題型一題型二題型三題型四題型五(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為 質(zhì)量指標(biāo)值的樣本方差為s2=(-20)20.06+(-10)20.26+00.38+1020.22+2020.08 =104.所以這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)的估計(jì)值為100,方差的估計(jì)值為104.(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計(jì)值為0

6、.38+0.22+0.08=0.68.由于該估計(jì)值小于0.8,因此不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.-11-題型一題型二題型三題型四題型五-12-題型一題型二題型三題型四題型五例2某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.-13-題型一題型二題型三題型四題型五(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d 哪一個適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回

7、歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程.(3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題:當(dāng)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?-14-題型一題型二題型三題型四題型五-15-題型一題型二題型三題型四題型五(3)由(2)知,當(dāng)x=49時(shí),年銷售量y的預(yù)報(bào)值 -16-題型一題型二題型三題型四題型五對點(diǎn)訓(xùn)練2為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗(yàn)員

8、在一天內(nèi)依次抽取的16個零件的尺寸:-17-題型一題型二題型三題型四題型五-18-題型一題型二題型三題型四題型五(1)求(xi,i)(i=1,2,16)的相關(guān)系數(shù)r,并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小(若|r|0.25,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小).-19-題型一題型二題型三題型四題型五解:(1)由樣本數(shù)據(jù)得(xi,i)(i=1,2,16)的相關(guān)系數(shù)為 由于|r|0.25,因此可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小.-20-題型一題型二題型三題型四題型五這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值的估計(jì)值為1

9、0.02. -21-題型一題型二題型三題型四題型五在統(tǒng)計(jì)中,一般通過計(jì)算現(xiàn)實(shí)生活中某事件的頻率,從而用來估計(jì)事件的概率,然后用概率計(jì)算其他事件的數(shù)量.-22-題型一題型二題型三題型四題型五例3某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:-

10、23-題型一題型二題型三題型四題型五以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.解:(1)這種酸奶一天的需求量不超過300瓶,當(dāng)且僅當(dāng)最高氣溫低于25,由表格數(shù)據(jù)知,最高氣溫低于25的頻率為 =0.6,所以這種酸奶一天的需求量不超過300瓶的概率的估計(jì)值為0.6.-24-題型一題型二題型三題型四題型五(2)當(dāng)這種酸奶一天的進(jìn)貨量為450瓶時(shí),若最高氣溫不低于25,則Y=6450-4450=

11、900;若最高氣溫位于區(qū)間20,25),則Y=6300+2(450-300)-4450=300;若最高氣溫低于20,則Y=6200+2(450-200)-4450=-100.所以,Y的所有可能值為900,300,-100.因此Y大于零的概率的估計(jì)值為0.8. -25-題型一題型二題型三題型四題型五對點(diǎn)訓(xùn)練3某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:20,30),30,40),80,90,并整理得到如下頻率分布直方圖:(1)從總體的400名學(xué)生中隨機(jī)抽取一人, 估計(jì)其分?jǐn)?shù)小于70的概率;(2)已知樣

12、本中分?jǐn)?shù)小于40的學(xué)生有5人, 試估計(jì)總體中分?jǐn)?shù)在區(qū)間40,50)內(nèi)的人數(shù);(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.-26-題型一題型二題型三題型四題型五解:(1)根據(jù)頻率分布直方圖可知,樣本中分?jǐn)?shù)不小于70的頻率為(0.02+0.04)10=0.6,所以樣本中分?jǐn)?shù)小于70的頻率為1-0.6=0.4.所以從總體的400名學(xué)生中隨機(jī)抽取一人,其分?jǐn)?shù)小于70的概率估計(jì)為0.4.(2)根據(jù)題意,樣本中分?jǐn)?shù)不小于50的頻率為(0.01+0.02+0.04+0.02)10=0.9,分?jǐn)?shù)在區(qū)間40,50)內(nèi)的人數(shù)為100-100

13、0.9-5=5.所以總體中分?jǐn)?shù)在區(qū)間40,50)內(nèi)的人數(shù)估計(jì)為400 =20.-27-題型一題型二題型三題型四題型五(3)由題意可知,樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù)為(0.02+0.04)10100=60,所以樣本中分?jǐn)?shù)不小于70的男生人數(shù)為60 =30.所以樣本中的男生人數(shù)為302=60,女生人數(shù)為100-60=40,男生和女生人數(shù)的比例為6040=32.所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計(jì)為32.-28-題型一題型二題型三題型四題型五在求古典概型的概率時(shí),常常應(yīng)用列舉法找出基本事件數(shù)及所求事件包含基本事件數(shù).列舉的方法通常有直接分類列舉、列表、樹狀圖等.-29-題型一題型二

14、題型三題型四題型五例4某優(yōu)質(zhì)高中為了選拔學(xué)生參加“全國中學(xué)生英語能力競賽(NEPCS)”,先在本校進(jìn)行初賽(滿分150分),若該校有100名學(xué)生參加初賽,并根據(jù)初賽成績得到如圖所示的頻率分布直方圖.(1)根據(jù)頻率分布直方圖,計(jì)算這100名學(xué)生參加初賽成績的中位數(shù);(2)該校推薦初賽成績在110分以上的學(xué)生代表學(xué)校參加競賽,為了了解情況,在該校推薦參加競賽的學(xué)生中隨機(jī)抽取2人,求選取的2人的初賽成績在頻率分布直方圖中處于不同組的概率.-30-題型一題型二題型三題型四題型五解:(1)設(shè)初賽成績的中位數(shù)為x,則(0.001+0.004+0.009)20+0.02(x-70)=0.5,解得x=81,故

15、初賽成績的中位數(shù)為81.(2)該校學(xué)生的初賽分?jǐn)?shù)在110,130)有0.00220100=4(人),分別記為A,B,C,D;分?jǐn)?shù)在130,150有0.00120100=2(人),分別記為a,b.在這6人中隨機(jī)選取2人,總的基本事件有(A,B),(A,C),(A,D), (A,a),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(D,a),(D,b),(a,b)共15個,其中符合題設(shè)條件的基本事件有8個.故選取的2人的初賽成績在頻率分布直方圖中處于不同組的概率為-31-題型一題型二題型三題型四題型五對點(diǎn)訓(xùn)練4某種植園在杧果臨近成熟時(shí),隨機(jī)從一些杧

16、果樹上摘下100個杧果,其質(zhì)量(單位:克)分別在100,150),150,200),200,250), 250,300),300,350),350,400中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.-32-題型一題型二題型三題型四題型五(1)現(xiàn)按分層抽樣從質(zhì)量為250,300),300,350)的杧果中隨機(jī)抽取6個,再從這6個杧果中隨機(jī)抽取3個,求這3個杧果中恰有1個質(zhì)量在300,350)內(nèi)的概率;(2)某經(jīng)銷商來收購杧果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的杧果大約還有10 000個,經(jīng)銷商提出如下兩種收購方案:A方案:所有杧果以10元/千克收購;B方案:對質(zhì)

17、量低于250克的杧果以2元/個收購,高于或等于250克的以3元/個收購.通過計(jì)算確定該種植園選擇哪種方案獲利更多.-33-題型一題型二題型三題型四題型五解:(1)抽取的6個杧果中,質(zhì)量在250,300)和300,350)的分別有4個、2個,設(shè)質(zhì)量在250,300)的4個杧果分別為A,B,C,D,質(zhì)量在300,350)的2個杧果分別為a,b.從這6個杧果中選出3個杧果的情況共有(A,B,C),(A,B,D),(A,B,a), (A,B,b),(A,C,D),(A,C,a),(A,C,b),(A,D,a),(A,D,b),(A,a,b),(B,C,D),(B,C,a),(B,C,b),(B,D,a

18、),(B,D,b),(B,a,b),(C,D,a),(C,D,b),(C,a,b),(D,a,b),共20種,其中恰有1個質(zhì)量在300,350)的情況有(A,B,a),(A,B,b),(A,C,a), (A,C,b),(A,D,a),(A,D,b),(B,C,a),(B,C,b),(B,D,a),(B,D,b),(C,D,a),(C,D,b),共12種,-34-題型一題型二題型三題型四題型五(2)方案A:(1250.002+1750.002+2250.003+2750.008+3250.004+3750.001)5010 000100.001=25 750(元).方案B:由題意,得質(zhì)量低于25

19、0克獲利(0.002+0.002+0.003)5010 0002=7 000(元);質(zhì)量高于或等于250克獲利(0.008+0.004+0.001)5010 0003=19 500(元);7 000+19 500=26 500(元).由于25 75026 500,因此B方案獲利更多,應(yīng)選B方案.-35-題型一題型二題型三題型四題型五比較多,且公式中兩類數(shù)據(jù)錯綜復(fù)雜,容易代錯,運(yùn)用列表法列出需要的數(shù)據(jù),并對數(shù)據(jù)依據(jù)公式進(jìn)行合并,減少了代入公式量的個數(shù),再代入公式求解運(yùn)算的準(zhǔn)確性高.-36-題型一題型二題型三題型四題型五例5某工廠有25周歲及以上的工人300名,25周歲以下的工人200名.為研究工

20、人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲及以上”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:50,60),60,70),70,80),80,90),90,100分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.-37-題型一題型二題型三題型四題型五25周歲以下組(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成22列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.

21、10的前提下認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?-38-題型一題型二題型三題型四題型五-39-題型一題型二題型三題型四題型五解:(1)由已知得,樣本中有25周歲及以上組工人60名,25周歲以下組工人40名.所以,樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上組工人有600.05=3(人),記為A1,A2,A3;25周歲以下組工人有400.05=2(人),記為B1,B2.從中隨機(jī)抽取2名工人,所有的可能結(jié)果共有10種,分別是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3, B2),(B1,B2).其

22、中,至少有1名“25周歲以下組”工人的可能結(jié)果共有7種,分別是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率為-40-題型一題型二題型三題型四題型五(2)由頻率分布直方圖可知,在抽取的100名工人中,“25周歲及以上組”中的生產(chǎn)能手有600.25=15(人),“25周歲以下組”中的生產(chǎn)能手有400.375=15(人),據(jù)此可得22列聯(lián)表如下:因?yàn)?.792.706,所以在犯錯誤的概率不超過0.10的前提下不能推斷“生產(chǎn)能手與工人所在的年齡組有關(guān)”.-41-題型一題型二題型三題型四題型五對點(diǎn)訓(xùn)練5微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計(jì),某公司200名員工中90%的人使用微信,其中每天使用微信時(shí)間不超過一小時(shí)的有60人,其余每天使用微信在一小時(shí)以上,若將員工年齡分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,使用微信的人中75%是青年人,若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中 是青年人.(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出22列聯(lián)表.-42-題型一題型二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論