基于SVM的群體異常行為識(shí)別方法研究正文_第1頁
基于SVM的群體異常行為識(shí)別方法研究正文_第2頁
基于SVM的群體異常行為識(shí)別方法研究正文_第3頁
基于SVM的群體異常行為識(shí)別方法研究正文_第4頁
基于SVM的群體異常行為識(shí)別方法研究正文_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、1.緒論1.1研究背景及意義當(dāng)今社會(huì)是一個(gè)人口密集,高度復(fù)雜的社會(huì),面臨的突發(fā)事件和異常事件越來越多,其監(jiān)測(cè)的難度和重要性也越來越突出?,F(xiàn)有的視頻監(jiān)測(cè)系統(tǒng)大多數(shù)只是進(jìn)行場(chǎng)景內(nèi)運(yùn)動(dòng)目標(biāo)的監(jiān)測(cè)和跟蹤,進(jìn)行進(jìn)一步識(shí)別與行為理解等很少,雖然人們不斷建立越來越大的視頻監(jiān)控系統(tǒng),但這些監(jiān)控系統(tǒng)也幾乎淪為一種提供事后取證錄像的工具。然而,監(jiān)控的目的就是對(duì)監(jiān)視場(chǎng)景中的異常事件或監(jiān)控對(duì)象的行為進(jìn)行檢測(cè)與分析。在長時(shí)間視頻序列中采用人工處理此類工作既不實(shí)用也不經(jīng)濟(jì),因此在視頻監(jiān)控序列中進(jìn)行一場(chǎng)檢測(cè)十分重要而且必要。群體異常事件檢測(cè)作為一種應(yīng)現(xiàn)實(shí)迫切需求而產(chǎn)生的研究領(lǐng)域,正受到越來越廣泛的關(guān)注。群體異常事件檢測(cè)旨在

2、從視頻數(shù)據(jù)中發(fā)現(xiàn)隱藏著的、能刻畫群體異常事件的特有的信息,并通過學(xué)習(xí)的方法訓(xùn)練檢測(cè)模型,當(dāng)下次有類似異常事件發(fā)生的時(shí)候,能夠自動(dòng)并及時(shí)的發(fā)出警報(bào),以幫助人們及時(shí)的決策處理異常事件,避免事態(tài)進(jìn)一步的擴(kuò)大。該領(lǐng)域的研究具有廣泛的應(yīng)用前景,己成為當(dāng)前研究的熱點(diǎn)之一。群體異常事件檢測(cè)系統(tǒng)的漏報(bào)與錯(cuò)報(bào)必然會(huì)給人們帶來巨大的困擾和損失。目前已有的各種群體異常檢測(cè)算法大都在檢測(cè)的準(zhǔn)確率和時(shí)間效率上不盡人意,都不能應(yīng)用于實(shí)際應(yīng)用。因此,有必要對(duì)群體異常檢測(cè)算法進(jìn)行更深入研究,開拓新思路,提出新算法,以提高準(zhǔn)確率和時(shí)間效率,降低漏報(bào)錯(cuò)報(bào)率,進(jìn)而能夠更加快速高效地檢測(cè)出聚集場(chǎng)景中的異常行為,提供更有價(jià)值的信息。國

3、內(nèi)外研究動(dòng)態(tài)及主要研究方法人類行為分析這一方向早已引起了人們的關(guān)注,1850年,E.J.MareyandE.Muybridge等拍攝運(yùn)動(dòng)的目標(biāo),并發(fā)現(xiàn)了人類及動(dòng)物的運(yùn)動(dòng)中出現(xiàn)的許多令人驚喜的現(xiàn)象。近年來,隨著相關(guān)學(xué)科的發(fā)展,人類的運(yùn)動(dòng)分析作為計(jì)算機(jī)視覺的一個(gè)熱點(diǎn)方向,吸引了大量的研究人員,美國、英國等發(fā)達(dá)國家,已經(jīng)開始了大量人類行為識(shí)別項(xiàng)目的研究。1997年美國國防高級(jí)研究項(xiàng)目署(DefenseAdvancedResearchProjectsAgency)與卡內(nèi)基梅隆大學(xué)、麻省理工學(xué)院等諸多高校合作研究視覺監(jiān)控的重大項(xiàng)目VSAM(VisualSurveillanceAndMonitoring)

4、,主要是研究對(duì)戰(zhàn)場(chǎng)及普通民用場(chǎng)景下的目標(biāo)行為識(shí)別技術(shù);美國賓夕法尼亞州大學(xué)研究的三維人體頭部及臉部跟蹤系統(tǒng),采用了有限元素模型對(duì)人臉動(dòng)作進(jìn)行實(shí)時(shí)跟蹤;Microsoft公司也推出了3D體感攝影機(jī)Natal,逐步將基于視覺的人機(jī)交互接口應(yīng)用到商業(yè)領(lǐng)域中。人類群體異常行為的檢測(cè)是人類行為識(shí)別的重要組成部分,這一領(lǐng)域的研究最近成為了熱點(diǎn)。RaminMehran等提出在圖像中建立粒子,利用SFM(SocialForceModel)描述粒子與周圍空間的相互作用力,用力的強(qiáng)度來描述視頻圖像中行人行為,然后構(gòu)建局部時(shí)空立方體并建立Bag-of-words模型,達(dá)到了較好的效果;ShandongWu等也采用了

5、一種粒子流動(dòng)的方式,利用粒子的軌跡來描述局部的軌跡運(yùn)動(dòng),實(shí)現(xiàn)了異常行為的檢測(cè)與定位;針對(duì)極端擁擠場(chǎng)景中的異常行為檢測(cè)問題,Louis和Kratz使用基于梯度的時(shí)空模型描述場(chǎng)景運(yùn)動(dòng)信息,并用HMM來捕獲時(shí)空模型之間的關(guān)系;VijayMahadevan等人用MDT模型化視頻序列,然后分別檢測(cè)模型在時(shí)空和空間上的異常,整合后判斷異常行為是否出現(xiàn);RaminMehran等人提出用脈線來表征擁擠的場(chǎng)景,清晰的描述了復(fù)雜場(chǎng)景下的人群行為。目前,國外比較有代表性的實(shí)時(shí)系統(tǒng)有:(1)MIT的Plinder系統(tǒng)這個(gè)系統(tǒng)能用來實(shí)時(shí)地跟蹤人,并分析理解人的行為,通過固定的攝像頭,它可以適應(yīng)不同類型的場(chǎng)景,但只能處理

6、單個(gè)沒有被遮擋的人體,并且要求人是站立的CMU的VSAM系統(tǒng)1997年美國國防高級(jí)研究部署DARPA(DefenseAdevancedResearchProjectsAgency)設(shè)立了以卡內(nèi)基梅隆大學(xué)(CarnegieMellonUniversity)為首,麻省理工學(xué)院(MassachusettsInstituteofTechnology)等高校參與的視覺監(jiān)控重大項(xiàng)目VSAM(VisualSurveillanceandMonitoring),主要研究用于戰(zhàn)場(chǎng)一普通民用場(chǎng)景進(jìn)行監(jiān)控的自動(dòng)視頻理解技術(shù)。利用虛擬場(chǎng)景中的虛擬物體來代替人力監(jiān)控費(fèi)用昂貴,非常危險(xiǎn)或者人力無法實(shí)現(xiàn)等場(chǎng)合的監(jiān)控Haril

7、aoglu的W4系統(tǒng)Maryland大學(xué)的Haritaolu等人開發(fā)了W(What,Where,When,Who)系統(tǒng)。是一個(gè)全面的人體動(dòng)作的實(shí)時(shí)視覺監(jiān)控系統(tǒng),W不僅能夠定位人和分割出人的身體部分,而且能夠通過家里外觀模型來實(shí)現(xiàn)多人的跟蹤,并可以檢測(cè)人是否攜帶物體簡單行為,還可以進(jìn)行人的標(biāo)準(zhǔn)姿勢(shì),如:站,做,躺,臥的行為識(shí)別。此外,美國的雷丁大學(xué)(UniversityofReading)已經(jīng)開展了對(duì)車輛和行人的跟蹤機(jī)器交互作用識(shí)別的相關(guān)研究:IBM與Microsoft等公司也正逐步將基于視覺的手勢(shì)識(shí)別技術(shù)應(yīng)用于商業(yè)領(lǐng)域中,當(dāng)前,國際上一些權(quán)威期刊將人的運(yùn)動(dòng)分析研究作為主題內(nèi)容之一,為該領(lǐng)域研究

8、人員提供更多的交流機(jī)會(huì)。在國內(nèi),目前開展這方面研究的單位主要有中國科學(xué)院計(jì)算技術(shù)研究所、中國科學(xué)院自動(dòng)化研究所、浙江大學(xué)人工智能研究所等。雖然人類運(yùn)動(dòng)分析還屬于一個(gè)新興的研究領(lǐng)域,但卻取得了良好的成績。例如,由中國科學(xué)院計(jì)算所研究的“三維人體運(yùn)動(dòng)仿真技術(shù)的定量輔助分析系統(tǒng)”“數(shù)字化三維人體運(yùn)動(dòng)的計(jì)算機(jī)仿真和分析技術(shù)”和“基于視頻分析的技術(shù)”。這些科研成果在雅典奧運(yùn)會(huì)上得到了實(shí)際的應(yīng)用,并且取得了巨大的成就。中國科學(xué)院自動(dòng)化研究所對(duì)人類的步態(tài)進(jìn)行分析識(shí)別,進(jìn)而判定人類的身份。浙江大學(xué)主要研究人體動(dòng)畫,從視頻流提取動(dòng)畫信息,替代傳統(tǒng)運(yùn)動(dòng)捕捉設(shè)備。微軟亞洲研究院多媒體研究高級(jí)人機(jī)交互手段。例如,通過

9、對(duì)手勢(shì)語言的理解,還可以進(jìn)行聾人與計(jì)算機(jī)之間的手語交流。盡管在人類簡單行為研究中取得了一定成果,但國內(nèi)的人類群體異常行為研究還處于一個(gè)發(fā)展的階段,隨著這一領(lǐng)域研究的深入及需求的提升,必然會(huì)有更多的研究者將精力投入到這一方向。人的行為分析研究在視頻監(jiān)控系統(tǒng)中的應(yīng)用往往關(guān)注與人的異常行為,目前,異常行為檢測(cè)的實(shí)現(xiàn)方法通常有兩類:(1)把小概率行為或與先驗(yàn)規(guī)則相反的行為看作異常行為(2)把與已知正常行為的模式不匹配的行為看作異常行為1.3論文的主要內(nèi)容及結(jié)構(gòu)安排本文研究群體異常行為的檢測(cè),提出了一種具有一定創(chuàng)新意義并可行的方法。本文重點(diǎn)對(duì)群體異常行為識(shí)別中的關(guān)鍵技術(shù)進(jìn)行了如下研究:(1)根據(jù)人類群體

10、運(yùn)動(dòng)的視頻中存在時(shí)間和空間方向上劇烈變化的位置的特點(diǎn)及時(shí)空特征點(diǎn)方法在簡單人體行為識(shí)別中取得的成功,提出了用時(shí)空特征點(diǎn)來描述人類群體的運(yùn)動(dòng),選擇了魯棒方法Gabor小波函數(shù)方法用來提取時(shí)空特征點(diǎn),通過實(shí)驗(yàn)驗(yàn)證了這種方法可以有效的解決人類群體異常行為檢測(cè)問題。在時(shí)空特征點(diǎn)的描述符建立階段,引入了時(shí)空Haar特征構(gòu)建描述符利用高斯混合模型對(duì)正常行為的特征點(diǎn)集建立模型,為每個(gè)關(guān)鍵詞分配不同的概率權(quán)重,并且準(zhǔn)確的描述了不同類別出現(xiàn)的概率和輸入的時(shí)空特征屬于各個(gè)類別的概率。(2)為正常行為以及異常行為中的每個(gè)視頻片段建立視頻向量,將生成的視頻向量對(duì)SVM進(jìn)行訓(xùn)練以及學(xué)習(xí),輸入已知類別的測(cè)試視頻,利用已訓(xùn)

11、練好的SVM對(duì)視頻進(jìn)行群體異常行為的測(cè)試,根據(jù)已知數(shù)據(jù)和得出的結(jié)果分析研究,得出SVM的識(shí)別率,并根據(jù)實(shí)際的結(jié)果對(duì)SVM進(jìn)行參數(shù)調(diào)整和進(jìn)一步的完善。對(duì)已經(jīng)完善的SVM分類器進(jìn)行未知視頻的預(yù)測(cè),初步用于檢測(cè)群體行為是正?;蚴钱惓U撐母髡聝?nèi)容安排如下:第一章緒論,研究背景意義、國內(nèi)外研究現(xiàn)狀、論文的主要內(nèi)容及文章的結(jié)構(gòu)安排。第二章時(shí)空特征點(diǎn)的提取與描述符的構(gòu)建,利用基于高斯和Gabor小波響應(yīng)函數(shù)時(shí)空特征點(diǎn)檢測(cè)方法提取時(shí)空特征點(diǎn):然后闡述了對(duì)時(shí)空特征點(diǎn)的描述,采用了基于時(shí)空Haar特征描述符建立方法,通過描述符聚類建模,產(chǎn)生輸入向量,第三章詳細(xì)介紹了SVM的理論,闡述SVM的應(yīng)用。對(duì)描述符聚類建模

12、生成描述向量,將正常行為視頻和異常行為視頻分別以時(shí)間為單位劃分為N幀,分別對(duì)每幀進(jìn)行聚類生成描述向量并生成視頻向量,這章中主要介紹了EM方法,混合高斯模型方法的基本原理,以及如何用基于EM的混合高斯模型估計(jì)模型的參數(shù),輸入視頻向量對(duì)SVM進(jìn)行訓(xùn)練,對(duì)已知的視頻作為輸入視頻對(duì)SVM進(jìn)行分辨率的檢測(cè),達(dá)到較高的分辨率后,對(duì)未知視頻進(jìn)行檢測(cè)第四章實(shí)驗(yàn)數(shù)據(jù)結(jié)果與分析。分別闡述了時(shí)空特征點(diǎn)的提取,描述符的構(gòu)建,并對(duì)試驗(yàn)結(jié)果進(jìn)行分析。第五章總結(jié),本章總結(jié)了本文所做的工作,成果和不足之處。2.視頻底層運(yùn)動(dòng)特征的提取及聚類建模2.1時(shí)空特征點(diǎn)對(duì)人體運(yùn)動(dòng)進(jìn)行特征提取是行為識(shí)別的關(guān)鍵。人體運(yùn)動(dòng)特征存在于視頻圖像中

13、時(shí)間和空間方向像素值發(fā)生劇烈變化的位置,因?yàn)樗鼈兺素S富的信息,同時(shí)也具有較強(qiáng)的穩(wěn)定性。通過離散的特征點(diǎn)捕獲表征這些位置就可以有效的描述人體行為,通常這些點(diǎn)我們稱作為特征點(diǎn)?;诟咚购虶abor小波函數(shù)提取時(shí)空特征點(diǎn)時(shí)空特征點(diǎn)有能力捕獲視頻中人體的劇烈運(yùn)動(dòng),并已經(jīng)應(yīng)用于簡單行為識(shí)別中,因此我們可以將其合理的應(yīng)用于群體異常行為檢測(cè)中。如何提取時(shí)空特征點(diǎn)是進(jìn)行群體異常行為檢測(cè)的關(guān)鍵。本章選用的是基于高斯和Gabor小波函數(shù)的檢測(cè)方法。Dollar等人提出任何進(jìn)行非勻速運(yùn)動(dòng)的人體區(qū)域都可以看作是時(shí)空特征點(diǎn),使用簡單的檢測(cè)器也可以獲得稠密的時(shí)空特征點(diǎn)。Dollar方法未直接擴(kuò)展二維空間檢測(cè)器,而

14、是提出了一種新的檢測(cè)器,這種檢測(cè)器基于高斯和Gabor小波函數(shù),在本質(zhì)上借鑒了Gabor小波在圖像分析中取得的成功。在這種方法中,通過計(jì)算視頻流時(shí)空中每一個(gè)像素點(diǎn)處的二維空間高斯和一維時(shí)間Gabor小波函數(shù)響應(yīng)值來確定時(shí)空特征點(diǎn),若視頻三維空間中某點(diǎn)響應(yīng)值為局部極值且大于某一閾值,則認(rèn)為該極值點(diǎn)為時(shí)空特征點(diǎn)。響應(yīng)函數(shù)定義為:R=(I*g*h)2+(I*g*h)2(2-1)evod其中,I為視頻流圖像,g(x,y;J為二維空域高斯平滑濾波器,h和h為一維Gabor時(shí)域?yàn)V波器,evod定義分別為:h(t;T,)=cos(2兀te)e-12/t2ev(2-2)h(t;T,)=sin(2兀te)e-1

15、2t2odb和t分別為空域和時(shí)域尺度,二4弋。在時(shí)空特征點(diǎn)的尺度選擇問題上,Dollar認(rèn)為基于這種響應(yīng)函數(shù)的時(shí)空特征點(diǎn)檢測(cè)器受尺度變化的影響較小,可以忽略。而以該方法為基礎(chǔ)進(jìn)行人類簡單行為識(shí)別的研究中,研究者一般都采用在時(shí)間和空間上離散的取多尺度進(jìn)行組合,用有限的固定尺度近似所有可能出現(xiàn)的尺度,因此來解決尺度問題。圖2-1為根據(jù)Dollar方法對(duì)簡單場(chǎng)景下不同行人走路行為提取的時(shí)空特征點(diǎn)分布圖,盡管人類的性別、背景、尺度不同,但他們的時(shí)空特征點(diǎn)分布具有相似性,都出現(xiàn)在運(yùn)動(dòng)較為劇烈的腿部,而產(chǎn)生平移運(yùn)動(dòng)的身體上半部分幾乎不出現(xiàn)時(shí)空特征點(diǎn)。由此可知,人類行為產(chǎn)生的劇烈變化可以用Dollar方法提

16、取時(shí)空特征點(diǎn)來描述。(c)圖2-1根據(jù)Dollar方法對(duì)不同行人走路行為提取的時(shí)空特征點(diǎn)分布圖Fig.2-1DifferentpersonSTIPsextractionresultsinwalkingactionbasedonDollar2.3時(shí)空特征點(diǎn)的描述時(shí)空特征點(diǎn)雖然反映了人體運(yùn)動(dòng)空間結(jié)構(gòu)發(fā)生顯著變化的位置,但它們只是一些孤立的點(diǎn),只有這些點(diǎn)的位置信息很難判斷人類的行為。因此,通常需要利用特征點(diǎn)周圍的時(shí)空信息對(duì)這些點(diǎn)進(jìn)行描述,描述的過程即為時(shí)空特征點(diǎn)的描述符構(gòu)建過程。描述符為從時(shí)空特征點(diǎn)為中心的小立方體中提取的具有描述意義的一維向量,一般包含了局部的梯度、光流等信息。正常行為與異常行為的

17、時(shí)空特征點(diǎn)分布有一定差別,其描述符也必然存在較大不同。因此,充分的利用時(shí)空特征點(diǎn)描述符包含的信息是區(qū)分正常行為與異常行為的關(guān)鍵。本文使用的是時(shí)空Haar特征進(jìn)行描述符的構(gòu)建。時(shí)空Haar特征Haar特征是一種有效圖像特征,它克服了傳統(tǒng)的灰度特征計(jì)算速度慢的缺點(diǎn),時(shí)空Haar特征的使用是基于視頻空間中存在灰度變化的區(qū)域,如人抬手時(shí),在圖像平面上和時(shí)間軸上都會(huì)發(fā)生灰度值的改變。YanKe等的成功說明時(shí)空Haar特征有能力捕獲人類行為運(yùn)動(dòng),他們使用的三種時(shí)空Haar特征如圖2-2所示。圖2-2三種時(shí)空Haar特征Fig.3-6Threetypesofspatial-temporalHaarfeatu

18、re為了計(jì)算描述符,GeertWillems方法使用了三種時(shí)空Haar特征,這種描述符各分量與時(shí)空特征點(diǎn)之間是位置相關(guān)的,在簡單人類行為識(shí)別中獲得較好的效果。但我們研究的人類群體行為中,人類的行為往往不一致,運(yùn)動(dòng)方向也不盡相同,而且,人與人之間有可能存在重疊與遮擋。因此,描述符各分量與時(shí)空特征點(diǎn)之間最好具有位置無關(guān)性,且能捕獲一定范圍內(nèi)的運(yùn)動(dòng)變化信息。為了更加準(zhǔn)確、豐富的描述時(shí)空特征點(diǎn)的時(shí)空信息,采用了XinyiCui使用的L,L,L,L,L,L,L7種時(shí)空Haar特征,特征結(jié)構(gòu)如圖2-3所示。xytytxtxyxyt圖2-37種時(shí)空Haar特征Fig.2-3Seventypesofspati

19、al-temporalHaarfeature為了構(gòu)建時(shí)空Haar特征描述符,以每個(gè)時(shí)空特征點(diǎn)為中心選取一個(gè)時(shí)空立方體,即在時(shí)空特征點(diǎn)周圍M*M*N范圍內(nèi)計(jì)算各點(diǎn)的Haar特征,每個(gè)點(diǎn)都用一個(gè)7維向量Q,L,L,L,L,L,L)來描述。在所有點(diǎn)的特征計(jì)算后,將所xytytxtxyxyt有點(diǎn)的特征向量進(jìn)行直接求和操作,則得到7維的描述符向量。描述符向量D為:2-3)D=EL,工L,工L,工L,工L,工L,工LxytytxtxyxytD為7維向量。為了使描述符使應(yīng)不同的尺度、光照等,在計(jì)算各維Haar特征值時(shí),都采用了最大最小值歸一化。最終的描述符D的各維為:D=D/Normiii其中,Norm=m

20、ax(D)-min(D),i=l,27。iii下面詳細(xì)介紹了對(duì)描述符聚類原理和高斯混合模型建模。2.4混合模型聚類原理混合模型建模實(shí)質(zhì)上是將給定數(shù)據(jù)集X=x,X中的數(shù)據(jù)劃分到它最ln可能歸屬的類中去(或成分中去),首先要確定數(shù)據(jù)集X的可能性最大的標(biāo)簽向量集Z=Z,Z,設(shè)X的標(biāo)簽向量記為Z=(z,z)t,若X的所在的類已lniiiliGi1X在第k類中經(jīng)被確定(如X在第k類中),則z=ti在第類中。iik0其匕一般認(rèn)為Z為相互獨(dú)立的隨機(jī)變量,并且有p(z=1卩)=兀,因此Z服從多iikki項(xiàng)分布,記為ZM(兀兀),(i=1,n,k=1,G)。想要獲得數(shù)據(jù)集X的可iG1G能性最大的標(biāo)簽向量集,就要

21、合理的從數(shù)據(jù)集中估計(jì)出模型的參數(shù)值0,使得VXeX都能確定它可能性最大的標(biāo)簽。i標(biāo)簽向量集Z可以看作是隱含在數(shù)據(jù)集X中的變量集,若混合模型中各混合成分的類型是明確的(如高斯類型),并且對(duì)數(shù)據(jù)學(xué)習(xí)后可知0的極大似然估計(jì)為小,就可以得到數(shù)據(jù)集X中觀察數(shù)據(jù)X歸屬于某一類的概率t,計(jì)算表示iik式如公式(2-4)所示:t(X10)=p(z=11X;0)=兀kh(X5(1in),(1k0;兀kkkk=1若f(x0)服從多元正態(tài)分布,即高斯分布,則這種混合模型就稱為高斯混ki、k合模型(GMM)。混合模型的G個(gè)成分就是G個(gè)獨(dú)立同分布的高斯分布,模型中參數(shù)0包含均值卩和協(xié)方差矩陣工兩部分。概率密度函數(shù)f(x

22、0)的形式kkkkrk為:因此式(2-7)所示exp(2兀)p/21.)TT2i*kkik1/22-6)k該概率分布可以用G個(gè)高斯概率密度函數(shù)的加權(quán)平均來描述,如公ki2-7)P(x0)=f(x卜,)kk1kkk=1其中,兀為混合模型中高斯概率密度函數(shù)的權(quán)重。高斯混合模型的構(gòu)成如k圖2-4所示。p(九IX)卩1,卩2GG圖2-4高斯混合模型示意圖Fig.2-4Gaussianmixturemodeldiagram由此可見,高斯混合模型中的各個(gè)分量p可通過均值向量卩和協(xié)方差矩陣kk進(jìn)行描述,因此高斯混合模型可用參數(shù)集進(jìn)行表示,其形式為九二,工(k=1,2,kkk,G)。聚類是以均值巴為中心的橢圓

23、體的分布。其它的幾何學(xué)性質(zhì)(方向,體積,形狀)是由協(xié)方差矩陣工決定的。Banfield和Raftery等人提出了分解工的kk特征值的模型聚類的框架為:工二九DADt。kkkkk2.6EM算法的含義及原理EM算法是一種迭代算法,基本原理可以表述為3:把可以被觀察到的數(shù)據(jù)看作Y,缺失數(shù)據(jù)看作Z,則完全數(shù)據(jù)X二(Y,Z)。設(shè)模型的參數(shù)為。,0關(guān)于Y的后驗(yàn)分布p(0|Y)具有較高的復(fù)雜度,如果缺失數(shù)據(jù)Z已知,則可以得到一個(gè)關(guān)于0的后驗(yàn)分布p(0|y,z),然后考慮Z,又可以對(duì)Z的假設(shè)作進(jìn)一步的檢查和調(diào)整。如此循環(huán)計(jì)算,就會(huì)將復(fù)雜的極大化抽樣問題轉(zhuǎn)化成簡單的極大化或抽樣問題。EM算法的循環(huán)迭代中包含兩個(gè)

24、步驟,即E步和M步。E步(ExpectationStep)為期望步,M步(MaximumLikelihoodStep)為極大似然步。2.7聚類的EM算法假設(shè)存在完整數(shù)據(jù)集Y二(X,Z),其中X=x,x是觀察到的不完整的數(shù)1n據(jù)集,Z為代表著缺失數(shù)據(jù)集的隱含變量。在Z中,Zwl,2,M,其中M為i有限正整數(shù)。若完整數(shù)據(jù)集Y=(x,z),(x,z),則完整數(shù)據(jù)集的似然函數(shù)可11nnTOC o 1-5 h z以表示為:L(0|X,Z)=p(X,Z|0)fp(x,z0)Z=(z,z)(2-8)ii1ni=1該似然函數(shù)的期望值為:E(L(0|X,Z)=Jp(X,Z|0)f(Z)dZ(2-9)Z假設(shè)初始參

25、數(shù)為0o,在每次循環(huán)中都會(huì)產(chǎn)生新的參數(shù)0;EM算法的每次迭代都由E步和M步兩步組成:E-step:引入輔助函數(shù)Q(0,0(i-1),定義為:Q(0,0(i-1)=E(logL(0|X,Z)=JlogL(0|X,Z)f(Z0(i-i)dZ(2-10)Z其中,0(i-1)是上一步迭代運(yùn)算所求出的參數(shù)值。根據(jù)公式中可知輔助函數(shù)Q(0,0(i-1)為0的函數(shù),并且它的值就是logL(0|X,Z)的期望值。M-step:求解0*,使得Q(0*,0(i-1)獲得極大值,即:0*=0*=0(i)=argmaxQ(0,0(i-1)顯然,EM算法能夠保證0*0*及算法的收斂性質(zhì)。i(i-1)在高斯混合模型(GM

26、M)中,設(shè)y=(x,z)為完整數(shù)據(jù),iii變量,z=(z,z)為隱含變量,則:ii1,ziGZik設(shè)z的概率分別為兀,i1的概率密度為:Wf(x|0kik=12-11)x為可觀察到的iifxbelongstogroupkiotherwise2-12)且與G類獨(dú)立同分布,通過觀察變量x給出的zii,兀G)嘆。完整數(shù)據(jù)的對(duì)數(shù)似然函數(shù)可以表示為:L(0,兀,zx)=茨zlog兀f(xp)(2-13)kkikikkkiki=1k=1在混合模型參數(shù)求解中應(yīng)用聚類的EM算法需要在E-step和M-step之間進(jìn)行迭代。在E-step中,通過觀察變量x和當(dāng)前的參數(shù)估計(jì),可以計(jì)算出完整數(shù)據(jù)對(duì)數(shù)似然函數(shù)的條件期

27、望z;在M-step中,根據(jù)E-step獲得的值,計(jì)算參數(shù)估ik計(jì),即權(quán)重,均值,協(xié)方差矩陣,使得似然函數(shù)值達(dá)到最大。下面給出了高斯混合模型建模中EM算法的計(jì)算公式:atki=112-14)p(kx,0t)i兀t=(XtkNk|LXt+1=Nxkati=1i工t+1=丄工Nxkati=1ik兀tp(kx,)其中,p(kx,0t)=ikp(kx,0t)(x-卩t+1)(x-卩t+i)tiivivkk兀tp(kx,0t)工Kj=1J將新的參數(shù),即均值、方差、歸屬類別的先驗(yàn)概率,帶入E步,循環(huán)迭代計(jì)算,直到樣本集合不引起各個(gè)類別的似然函數(shù)明顯的變化為止,此時(shí)已經(jīng)收斂或滿足結(jié)束條件,算法執(zhí)行結(jié)束。2.

28、8本章小結(jié)本章提出了通過提取時(shí)空特征點(diǎn)來描述運(yùn)動(dòng)人體的特征,對(duì)描述符進(jìn)行建模,是進(jìn)行群體異常行為檢測(cè)的關(guān)鍵步驟,通過時(shí)空Haar特征構(gòu)建描述符,本文詳細(xì)闡述了使用gabor小波函數(shù)來提取時(shí)空特征點(diǎn),通過時(shí)空haar特征實(shí)現(xiàn)的是對(duì)描述符的構(gòu)建,EM方法的高斯混合模型對(duì)描述符建模方法,然后根據(jù)實(shí)驗(yàn)充分驗(yàn)證了EM的高斯混合模型的準(zhǔn)確性和合理性。3.SVM的基本原理概述3.1支持向量機(jī)(SVM)理論支持向量機(jī)(SupportVectorMachine,SVM)是近年來在模式識(shí)別與機(jī)器學(xué)習(xí)領(lǐng)域中出現(xiàn)的新工具,SVM以統(tǒng)計(jì)學(xué)習(xí)理論為基礎(chǔ),有效地避免經(jīng)典學(xué)習(xí)方法中過學(xué)習(xí),維數(shù)災(zāi)難,局部極小等傳統(tǒng)分類存在的問

29、題,在小樣本條件下仍然具有良好的泛化能力,因此受到了廣泛的關(guān)注,而且在語音字符識(shí)別領(lǐng)域獲得了目前為止最好的性能,在美國的科學(xué)雜志上,支持向量機(jī)被稱為“機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)令人矚目的發(fā)展方向”。統(tǒng)計(jì)學(xué)習(xí)理論統(tǒng)計(jì)學(xué)習(xí)理論(StatisticalLearningTheory)是Vapnik等人在20世紀(jì)70年代末提出并在20世紀(jì)90年代逐漸完善的一種針對(duì)小樣本的機(jī)器學(xué)習(xí)理論。它的核心問題是尋找一種歸納原則以實(shí)現(xiàn)最小風(fēng)險(xiǎn)泛函,從而實(shí)現(xiàn)最佳的推廣能力。對(duì)于二類模式識(shí)別問題,設(shè)存在l個(gè)學(xué)習(xí)樣本(X,y),(X,y),.,(X,y)11iillyg(-1,+1),學(xué)習(xí)的目的是從一組函數(shù)f(X,W)中求出一個(gè)

30、最優(yōu)函數(shù)if(X,W),使在對(duì)未知樣本進(jìn)行估計(jì)時(shí),期望風(fēng)險(xiǎn)0R(W)=JL(y,f(X,W)dF(X,y)最小。VC維數(shù)論統(tǒng)計(jì)學(xué)習(xí)理論的一個(gè)核心概念就是VC維(VCDimension)概念,它是描述函數(shù)集或?qū)W習(xí)機(jī)器的復(fù)雜性或者說是學(xué)習(xí)能力(Capacityofthemachine)的一個(gè)重要指標(biāo)一般來說,VC維數(shù)越大則學(xué)習(xí)機(jī)器越復(fù)雜.VC維數(shù)是用來度量一個(gè)函數(shù)集合的容量的尺度值.它定義為,當(dāng)一個(gè)函數(shù)集合的VC維數(shù)為n時(shí),那么存在一個(gè)點(diǎn)集x,它的所有可能的(兩類)組合全部n可用該函數(shù)集合分割開,而對(duì)于任何大于x的點(diǎn)集x(mn)都不滿足該上述條nm件,即用該函數(shù)不能將其所有可能的組合分割開。例如在

31、平面上的三個(gè)點(diǎn)的任意組合都可以用直線分割開,因此平面上直線函數(shù)集合的VC維數(shù)是3。如果對(duì)任意數(shù)目的樣本都有函數(shù)能將它們分隔開,則函數(shù)集的VC維是無窮大3.1.3結(jié)構(gòu)風(fēng)險(xiǎn)理論統(tǒng)計(jì)學(xué)習(xí)理論從vc維的概念出發(fā),推導(dǎo)出了關(guān)于經(jīng)驗(yàn)風(fēng)險(xiǎn)和實(shí)際風(fēng)險(xiǎn)之間關(guān)系的重要結(jié)論,稱作泛化誤差的邊界。如下的估計(jì)真實(shí)風(fēng)險(xiǎn)的不等式,對(duì)于任意ael(I是抽象參數(shù)集合),以至少1-n的概率滿足以下不等式R(a)1,i=1,li點(diǎn)x到超平面(w,b)的距離d(w,b;x)是:d(w,b;x)=3-6)最優(yōu)超平面是在滿足(3-4)的條件下使如下的邊界距離p(w,b)達(dá)到最大的超平面.2p(w,b)=mmd(w,b;x)+mmd(w,

32、b;x)=-(3-7)IIwIIx./y=1.x./y.=1即使下式最小的超平面是最優(yōu)的:0(w)=IIwII-(3-8)-可見在滿足(3-5)的條件下,這時(shí)對(duì)應(yīng)于超平面,上式與b無關(guān)。改變b只會(huì)使該超平面沿自身的法線方向移動(dòng),其邊界距離沒有變化,但是這時(shí)的超平面不是最優(yōu)的了,因?yàn)樗x其中某一類會(huì)更近些。在滿足(3-5)的條件下求最解優(yōu)化問題(3-7),可根據(jù)Lagrange乘數(shù)法轉(zhuǎn)化為下式的鞍點(diǎn)過程:L(w,b,a)=IIwII-一工a(x*w)+by1(3-9)-.=1其中,a是Lagrange乘子.需要將上式相對(duì)于w,b參數(shù)最小化并且相對(duì)于.a0最大化.根據(jù)Lagrange對(duì)偶原理,該問

33、題可以轉(zhuǎn)換為其對(duì)偶問題如下,3-10).maxW(a)=maxminL(w,b,a)相對(duì)于w,b使L最小化的方法如下,qly=0nyay=0dbii.=1=0nw=qwyaxy.所以,問題的解是:a=argminyy(x*x)ILaa-.j.j.j.a.=1j=1.=1求出優(yōu)化問題的解,就可以得到最優(yōu)分割超平面如下:圖3-4松弛變量的引入_w=axyiiii=11b=一一wx+x(312)2rs其中x,x是滿足下列條件的任何支持向量.rsf(x)=sgnHa*y(x-x)+b*(313)iii如下圖所示:i=1o圖3-2支持Hi比、Fig.3-2supportvectordomargin=2|

34、m1圖注:被圈定的實(shí)心點(diǎn)和空心點(diǎn)為不為零的支持向量的訓(xùn)練點(diǎn)。(2)支持向量機(jī)模型概括說,支持向量機(jī)就是首先通過用內(nèi)積函數(shù)定義的非線性變換將輸入空間變換到一個(gè)高維空間,在這個(gè)空間中求廣義最優(yōu)分類面。SVM分類函數(shù)形式上類似于一個(gè)神經(jīng)網(wǎng)絡(luò),輸出是中間節(jié)點(diǎn)的線性組合,每個(gè)中間節(jié)點(diǎn)對(duì)應(yīng)一個(gè)支持向量。算法最終將轉(zhuǎn)化成為一個(gè)二次型尋優(yōu)問題,從理論上說,得到的將是全局最優(yōu)點(diǎn),解決了在神經(jīng)網(wǎng)絡(luò)方法中無法避免的局部極值問題;算法將實(shí)際問題通過非線性變換轉(zhuǎn)換到高維的特征空間(FeatureSpace),在高維空間中構(gòu)造線性判別函數(shù)來實(shí)現(xiàn)原空間中的非線性判別函數(shù),特殊性質(zhì)能保證機(jī)器有較好的推廣能力,同時(shí)它巧妙地解決

35、了維數(shù)問題,其算法復(fù)雜度與樣本維數(shù)無關(guān);SVM分類問題大致有三種:線性可分問題、線性不可分問題。對(duì)于線性可分問題的解決:根據(jù)最優(yōu)解a*二(a,a,,a)T計(jì)算w*=yax選擇a*的一個(gè)正分量a,并12liiiji=1據(jù)此計(jì)算b=y-Yya(x,x)構(gòu)造分劃超平面和決策函數(shù),事實(shí)上,jiiija*的每一個(gè)分量a都與一個(gè)訓(xùn)練點(diǎn)相對(duì)應(yīng),而分劃超平面僅僅依賴于a不為零的ii訓(xùn)練點(diǎn),而與為零的訓(xùn)練點(diǎn)無關(guān)。Fig.3-3supportvectorsx為支持向量。i圖注:被圈定的點(diǎn)為支持向量。對(duì)于線性不可分問題,有兩種解決途徑:1.一是一般線性優(yōu)化方法,引入松弛變量此時(shí)的優(yōu)化問題為(i=1,2,,n)(3.

36、14)min0(w)=(w,w)+CYs,2ii=1y(w,x)+b-1+s0ii如下圖所示:Fig.3-4relaxedvariableintroduction(3-17)i=1二是V.Vapnik引入的核空間理論7將低維輸入空間中的數(shù)據(jù)通過非線性函數(shù)映射到高維屬性空間H(也稱為特征空間),將分類問題轉(zhuǎn)化到屬性空間進(jìn)行??梢宰C明,如果選用合適的映射函數(shù),輸入空間線性不可分問題在屬性空間中將轉(zhuǎn)化為線性可分問題。屬性空間中向量的點(diǎn)積運(yùn)算與輸入空間的核函數(shù)對(duì)應(yīng)。從理論上講,滿足Mercer條件的對(duì)稱函數(shù)K(x,x)都可以作為核函數(shù)。目前研究最多的核函數(shù)主要有三類:多項(xiàng)式內(nèi)核k(x,x)=(x-x)

37、+cq得到q階多項(xiàng)式分類器TOC o 1-5 h zii徑向基函數(shù)內(nèi)核RBFk(x,x)=exp-乞i2每個(gè)基函數(shù)中心對(duì)應(yīng)一個(gè)支持向量,它們及其輸出權(quán)值由算法自動(dòng)決定。Sigmoind內(nèi)核k(x,x)=tanh(v(x-x)+c)ii包含一個(gè)隱層的多層感知器,隱層節(jié)點(diǎn)數(shù)由算法自動(dòng)決定。引入核函數(shù)后,向量的內(nèi)積都由核函數(shù)來代替:iji=1minQ(a)=1藝aayyK(x,x)-藝2ijiji,jT(315)(316)a0,i藝ya=0iii=1分類函數(shù)式變?yōu)椋篺(x)=sgn蘭a*yK(x,x)+b*iiii=1根據(jù)KT條件有:對(duì)于非支持向量滿足a二0,上式只需要對(duì)支持向i進(jìn)行。任意選一支持向

38、量x,式中的b*由下述方程式給出:iyQa*yK(x,x)+b*=1iiii通常,在上式中也會(huì)引入松弛變量,此時(shí)該式的第一個(gè)約束條件為ag0,C,其他各式?jīng)]有變化。式(3-16)所示即為所謂的SVM模型。從上i面的討論中不難看出,在模式識(shí)別領(lǐng)域具體應(yīng)用SVM的步驟為:選擇適當(dāng)?shù)暮撕瘮?shù);求解優(yōu)化方程,獲得支持向量及相應(yīng)的Lagrange算子;寫出最優(yōu)分界面方程。(3)非線性向量機(jī)與廣義最優(yōu)分類面實(shí)際上,多數(shù)模式識(shí)別分類問題在原始的樣本空間內(nèi)樣本點(diǎn)都是線性不可分的,SVM采用的做法是:用一非線性映射函數(shù):Rd-F,把原始空間的樣本,映射到高維特征空間F(也可能是無窮維的),然后在此高維特征空間構(gòu)造

39、最優(yōu)分類面。由于訓(xùn)練算法只用到空間中的點(diǎn)積,即(x)(x),如果能夠?qū)ふ乙粋€(gè)核函ij數(shù)k(),使得k(x,x)二(x)(x),這樣,在高維空間的運(yùn)算僅僅是內(nèi)積的計(jì)算,ijij并且這種內(nèi)積的計(jì)算可以在原始空間中實(shí)現(xiàn)的,沒有必要知道具體的形式。但是并不是所有的核函數(shù)K都滿足這個(gè)要求,根據(jù)Hilbert-Schimidt原理,只要這種核函數(shù)滿足Mercer條件,它就可以作為內(nèi)積使用。用核函數(shù)k(x,x)代替最ij優(yōu)分類面的點(diǎn)積就可以實(shí)現(xiàn)某一非線性變換后的線性分類,并且沒有增加計(jì)算的復(fù)雜度。這樣處理以后就可以克服所謂“維數(shù)災(zāi)難”問題。3.2支持向量機(jī)在群體異常行為檢測(cè)中的應(yīng)用當(dāng)一幅視頻圖像進(jìn)入系統(tǒng)后,

40、我們首先按第二章中介紹的方法得到該視頻的時(shí)空特征點(diǎn),建立描述符,聚類建模,根據(jù)描述符,將描述符聚類,看屬于高斯模型的概率,如此對(duì)所有的訓(xùn)練視頻進(jìn)行特征點(diǎn)提取,儲(chǔ)存訓(xùn)練基,最后將所存取的每幅圖像的每段視頻的視頻向量連同該幅圖像所代表的分類(在二分類中,即為1或T)一同輸入進(jìn)行svm分類器訓(xùn)練,在訓(xùn)練過程中,正常行為作為正樣本,異常行為作為負(fù)樣本。對(duì)于正樣本,系統(tǒng)輸出為+1,對(duì)于負(fù)樣本則輸出為-1。測(cè)試時(shí),將測(cè)試樣本出入到經(jīng)過訓(xùn)練得到的分類器中,如果輸出為+1,則該樣本該行為為正常行為;否則,該行為是異常行為。為了評(píng)價(jià)分類結(jié)果,引入正確分類率PCR作為評(píng)價(jià)標(biāo)準(zhǔn),正確識(shí)別率的定義如下:正確識(shí)別率二識(shí)

41、別正確的樣本數(shù)T/總測(cè)試樣本數(shù)N。3.2.1異常行為檢測(cè)實(shí)例及分析1)視頻庫本實(shí)驗(yàn)中共選取了25幅視頻作訓(xùn)練樣本,其中正常行為為13張,異常行為視頻圖像為12張(2)程序?qū)崿F(xiàn)及結(jié)果分析對(duì)視頻圖像進(jìn)行檢測(cè),其程序?qū)崿F(xiàn)框圖可以歸納如下:圖3-5訓(xùn)練的流程圖Fig.3-5proceedureoftraining圖3-6檢測(cè)的流程圖Fig.3-6proceedureofpredicting前期訓(xùn)練機(jī)過程處理:輸入訓(xùn)練樣本圖像:對(duì)樣本視頻進(jìn)行底層運(yùn)動(dòng)特征提取處理后,進(jìn)行聚類和建模,生成視頻向量,依次對(duì)所有的視頻樣本進(jìn)行上述操作,每一幅都會(huì)得到一組視頻矢量,所有樣本圖像進(jìn)行svm高斯徑核函數(shù)訓(xùn)練,訓(xùn)練機(jī)器

42、完成。SVM的訓(xùn)練和測(cè)試將上述訓(xùn)練好的SVM進(jìn)行已知的視頻圖像的異常行為測(cè)試,計(jì)算準(zhǔn)確率,如果準(zhǔn)確率大于80%,則SVM就可用于未知視頻的異常行為的檢測(cè)中去。其中,正確率=正確樣本視頻數(shù)T/參與測(cè)試的總的樣本視頻數(shù)N利用SVM去進(jìn)行群體異常行為的檢測(cè)利用已經(jīng)完善的SVM進(jìn)行群體異常行為的檢測(cè),判斷未知視頻是否是異常行為。本章主要介紹了支持向量機(jī)SVM的一些基本的原理以及統(tǒng)計(jì)學(xué)習(xí)理論,闡述了SVM的核心算法,為后續(xù)工作做一些相關(guān)的鋪墊,對(duì)后面將要進(jìn)行的利用SVM來進(jìn)行群體異常行為檢測(cè)有很好的幫助,闡述了如何使用SVM進(jìn)行群體異常行為的檢測(cè),SVM的訓(xùn)練,并利用完善的SVM進(jìn)行群體異常行為的檢測(cè)試

43、驗(yàn)。3.3本章小結(jié)本章我們介紹了SVM的基本原理和一些算法和SVM的應(yīng)用,用SVM完成正常行為和異常行為的訓(xùn)練和學(xué)習(xí),在此之前,我們首先要介紹的是對(duì)描述符進(jìn)行聚類和建模,聚類我們選用的EM參數(shù)估計(jì)方法,建模我們選用的高斯混合模型,在實(shí)驗(yàn)過程中,我們對(duì)散步,慢走等行為和逃跑行為分別進(jìn)行訓(xùn)練和識(shí)別。在訓(xùn)練過程中,正常行為作為正樣本,異常行為作為負(fù)樣本。對(duì)于正樣本,系統(tǒng)輸出為+1,而對(duì)于負(fù)樣本則輸出為-1。測(cè)試時(shí),將測(cè)試樣本出入到經(jīng)過訓(xùn)練得到的分類器中,如果輸出為+1,則該樣本為正樣本,即該行為為正常行為;否則,該行為是異常行為。同樣對(duì)待識(shí)別的視頻進(jìn)行異常行為檢測(cè)判別時(shí),對(duì)視頻處理后,利用分類器(實(shí)

44、際是生成的判別函數(shù))進(jìn)行分類,得到異常行為的識(shí)別。4.實(shí)驗(yàn)數(shù)據(jù)以及結(jié)果4.1引言本章中出現(xiàn)得實(shí)驗(yàn)的結(jié)果,主要包括三個(gè)方面,時(shí)空特征點(diǎn)的提取實(shí)驗(yàn)和構(gòu)建描述符實(shí)驗(yàn)聚類實(shí)驗(yàn),下面我們將對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行總結(jié)與分析。實(shí)驗(yàn)結(jié)果本次試驗(yàn)中我們選取的delta和tao均為2.5,目的是在最合適的范圍內(nèi),選擇最佳的效果,時(shí)空特征點(diǎn)截取的視頻如圖所示(1)時(shí)空特征點(diǎn)的提?。喝N場(chǎng)景下的逃跑異常行為提取的時(shí)空特征點(diǎn)(2)描述符的部分?jǐn)?shù)據(jù)如下:0.0517810.0435800.0126400.0330780.0059630.0078630.0089460.0517810.0435800.0126400.0330780.0059630.0078630.0089460.0514860.0315140.0082550.0324480.0063430.0074160.0084980.0514860.0315140.0082550.0324480.0063430.0074160.0084980.0539280.0326000.013

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論