大數(shù)據(jù)分析的速度_第1頁
大數(shù)據(jù)分析的速度_第2頁
大數(shù)據(jù)分析的速度_第3頁
大數(shù)據(jù)分析的速度_第4頁
大數(shù)據(jù)分析的速度_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、以手機網(wǎng)絡數(shù)據(jù)獲取匿名預付費用戶群的基本信息及使用偏好以進行紳分營銷大數(shù)據(jù)分析的速度2日程分析無處不在一切有他自己的時間分析速度的價值分析和靈活案例在中國市場熱數(shù)據(jù)變現(xiàn)實踐標注所有您的多渠道客戶旅程,帶有10條線路的條碼, 并理解在哪和為什么您正在丟失銷售一個單獨的視覺化向您顯示百萬交易隱 藏的錯誤?在2天理解 10個影響您客戶的事宜,他們對這些 感覺如何,您需要什么來解決他們?僅僅6周在您的分析數(shù)據(jù)投資上產(chǎn)生500% 回報?分析無處不在8典型案例 基于實時數(shù)據(jù)Cell0004Cell 0002Cell 0001Cell 0005Cell 0003Cell 0011Cell 0013Cell

2、0010Cell 0012Cell 0014Call into the Orange shop to see new phones and earn 10 points per 10Euro Top Up !Sorry for the problems tickets for you in the next hour !Has movie channel at homePassing movie theatreReal-time offerHigh Value CustomerJust Dropped a callHas used 90% of BundleOld model HandsetM

3、edium Value CustomerJust Dropped a callPassing Orange ShopWill Cage, TeradataLoses ValueGains ValueResolution and notification before customer knowsBusiness Event e.g., a Customer Service Incident Apology within 15 minutesApology within 3 hoursApology within 24 hoursTimeApology within 3 daysNo Apolo

4、gyPerception of Resolution by Customer典型的時間和價值:客戶服務, 只是及時道歉Effectiveness of retention CampaignTime (hours)典型的時間和價值: 客戶呼吁或檢查競爭,然后開始制造過程3x retention and early winback campaign effectivenessAfterBefore623X24 hoursEARLY WINBACK of the customers who called the competition is only effective within 24 hour

5、s during which the call must be discovered and acted uponCustomer calls or checks competitor and churnsCustomer is given a special offer in the retention platform or called right after churnEffectiveness of retention CampaignTime (minutes)典型的時間和價值: 客戶步入專項區(qū)域,此處有他感興趣的零售提供RELEVANT LOCATION BASED OFFER

6、requires spee in reaction to predefined rules but also fast discovery of relevant eventsCustomer is checking info about the Spiderman PremierCustomer walks inside the ring fenceCustomer is within 20m of the cinemaT1T2T1: Time to discover the relevant eventT2: Time to relate it to location分析提升的類型Enha

7、nce existing classification or predictive power with new methods that require new speedFast discovery of a new piece of data that explains and allows identification of the cause ofa new problemFast trial of new data that enhances an existing predictive modelSpeed of analytic iterations makes easier

8、to find hidden patterns in data or rapidly changing patterns旅程分析: 制造& 渠道Based on the knowledge of the customer journey, we need to intervene here or we risk churnCEM attention requiredRESULT: Mofe complex problems required 4-6 weeks案例: 多重渠道行為分析The Multi Channel AnalysisProblem:Customers keep calling

9、 after they paid their billsSolution:Found wrong communication and changed itVerizon Case: http:/bcove.me/fu5d5vcb, or/customers/listening-to-100m-customers-with-unified-data-architecture/RESULT: Base Cause was found in 2 weeks and corrections saved thousands in call center路徑分析 看看什么優(yōu)于一個電話找到更好的銷售機會RE

10、SULT: 3x Better Predictability, 3.8x Additional Leads with Desired Response Rate$8M of Incremental Profit from One CampaignEXISTING PREDICTIVE MODELNO. OF CHILDRENSALARYADDRESSDETAILS. . .NEW DIGITAL VARIABLESPAGEDURATIONNO. OFRECURRING SCORECLICKSVISITSCell #1111 RadiusXACTION:1. Dispatch Engineer

11、to this location to check for physical blockage, antennae tilt, hand- off, reducing research area from 67M m2 to 100m22. Determine if cell 1114 with 850mhz is better for this metro area3. Send Text Msg to High Value Subscriber apologizingNetwork OK during rush hour butHigh-value Subscriber has repea

12、ted dropsGPS data shows specific location of RIFCall used 3G 1900mhz networkAnalysis of all calls within 1000 radius show abnormally high RIF rate規(guī)劃和優(yōu)化網(wǎng)絡工作RESULT: Symptoms can be found on a daily basisDegrees function allows analysis with very few lines of codeIMSIs of interest rapidly and easily id

13、entified from CDR dataSimbox欺騙什么的速度?Reaction SpeedSpeed to Learn那么我們需要什么來做這個?為什么?21分析和數(shù)據(jù)的價值分解$X$X$X$X$X$XRealization Of ROIWk 1Wk 2Wk 3Wk 4Wk 6Wk 5RoadmapAlignCreateEvaluateDeploy12345ExtensionAcquire DataInsight CreationPrep DataRecommendedDiscovery is a FAST process$Xm3 Releases Over 2 years$Xm$Xm

14、Release 1Release 2Release 340+ Projects over 2 yearsSuccessful ProjectFailed ProjectChange of Process only357911131517192123MARMAYJULSEPNOVJANMARMAYJULSEPNOV357911131517192123MARMAYJULSEPNOVJANMARMAYJULSEPNOV傳統(tǒng)的分析模式vs. 大數(shù)據(jù)探索DiscoveryTraditional速度是一切: 賽跑快速的分析咨詢參與程序EvaluateDeploy1RoadmapRACE2Align345E

15、xtensionAcquire DataInsight CreationCreatePrepDataRecommended1w4w1w利用數(shù)據(jù)再利用和培訓實現(xiàn)賽跑 時間 改善AlignEvaluate234Acquire DataInsight CreationCreatePrepData1w4w1wAlignEval234CreateInsight Creation0.5w2w0.5wAlignEvaluate234CreateInsight CreationPrep1w3w1w6 weeks3 weeksHow to halve your RACE time25TheoryHypothes

16、isObservationConfirmationTheoryHypothesisPattern探索驅(qū)動方法需要靈活和速度Operationalized models lead to new observationsProvide hypothesis to validate and modelPROOF FOCUSEDObservationINNOVATION FOCUSEDDiscovery Driven analytics are a complimentary capability to Model Driven analytics Model-DrivenDiscovery-Driv

17、en有洞察力的分離Mixed skill sets combine for deep insightThink tank project space for interactionCommunal sharing and collaborationCulture of exploration and challengeRapid iteration with business sponsorsVirtual teams or “Pods”3 or 4 people for 6 weeksInsight PODsData Scientist (TD)Business Consultant (TD

18、)Subject Matter Expert (Client)Analyst (Client)Data PODData SME (Client)Source Expert (Client)Data Engineer/Developer (TD)DBA (TD/Client)在探索團隊的有洞察力的分離Discovery TeamCRMPODFraud PODChurn PODClient PODDataPODexample only for illustration創(chuàng)造性的, 有洞察力的創(chuàng)新案例 (2-5 周)Intra day business workshops during the Ins

19、ight Creation phase12RoadmapCreateEvaluateDeploy1RACE2Align345ExtensionRecommended1 week4 weeks1 week29Eyeballs CountAnalytic insights improve “eyeballs” or people increaseOutside perspectives* can add intuitiveleaps in thinking速度的關鍵:一起工作(*) Could include using 2 hour virtual workshop to boost insig

20、hts using the TD Virtual Global Expert TeamRoadmapCreateEvaluateDeploy1RACE2Align345ExtensionRecommended1 week4 weeks1 week30為成功做準備LFEASIBILITYHLVALUEHIDENTIFY USE CASESPRIORITISATIONCRITICAL SUCCESS FACTORSWHO IS INVOLVED FROMTHE CUSTOMER?Analysts/Data ScientistsIT/ ArchitectureData OwnersBusiness

21、Subject Matter ExpertsUSE CASESDATA SOURCESData Source 1Data Source 2Use Case 1/Use Case 2DATA SCOPE & DEFINITION31對于 敏捷和成功的用能力者BUSINESS CHALLENGEALL TYPES OF DATAADVANCED ANALYTICS32使用案例:高級的分析價值框架 49 CASESMarketing & SalesConnections AnalyticsPricing OptimisationCustomer Satisfaction Through using

22、network & device data & all CRM dataB2B Corporate Offer ManagementCustomer Experience ManagementCustomer Behavior Analysis(voice, sms, data, mobility)Sentiment analysis text in social media, call center and CRM dataCEM IndexingService Efficiency operational failures impact satisfaction and ChurnEnha

23、nced Customer Profiling Enrichment using network, devices, social media analysisCustomer Journey leading to Churnchurn reason sequenceNext Best ActionCustomer behaviorCustomer Service EmpowermentBring the information to the front-lineNetwork IntelligenceCustomer Network Experience Quantify & underst

24、and the quality of customer experience when using the network & its servicesNetwork Management & PerformanceAnalysis of network & service utilisation, performance etcCustomer Services & Ops RT or NRT monitoring of customer experience for internal & external stakeholdersNetwork Ops & Maintenance Moni

25、toring & analysis of network availability for enhanced O&M capabilitiesDigital Telco & Data MonetizationLocation DataB2B Business where location based behavior/segmentation is soldMobilityTargeted advertising based upon subscriber mobility & behaviorsSegmentDirect data monetization based on segmenta

26、tionTarget Combining segmentation, location and behavior forbetter targeted actionsOperational Intelligence& Data Driven FinanceReal time Personalization Dynamic online targeting for recommendations & personalizationGolden Path Analysis Optimize web/self service portals & customer interactionsFraudU

27、sage, behavior and Customer data to detect internal/external Fraud and linkagesRisk ManagementIdentify customers at risk of payment defaultSingle view and integration of transactionsand eventsEasy inspection and analysis of new data sourcesSimple logic to tie precise transactional information of a c

28、ustomer with behavioural patternsHistory as needed to allow for a “Time Machine”用正確的工具和生態(tài)系統(tǒng)解除數(shù)據(jù)34AcquisitionAnalyticsAccessEMERGINGAPP FRAMEWORKData EnginesCONVENTIONALMULTI GENREDATAWAREHOUSEIN MEMORYDATA LAKENo SQLCOMPUTE CLUSTEROPERATIONA LQueryGridVIRTUAL QUERYUsersOperational SystemsCustomers P

29、artnersEngineersData ScientistsBusiness AnalystsKnowledge WorkersMarketing ExecutivesPlatform ServicesDEVELOPMENTDATAOPERATIONSPRIVATEHYBRIDCloud DeploymentPUBLICSourcesERPSCMCRMSensorsAudio and VideoMachine LogsTextWeb and SocialAppCenterREAL TIMEAster AnalyticsR, Spark,GiraphSAS, SPSS,KXENTeradata

30、 DatabaseHadoop Teradata DatabaseBusiness IntelligenceLanguagesIntegrated Development EnvironmentINGESTListener35分析以平衡分析生態(tài)系統(tǒng) 2016 Teradata UK&IIsolated datasets with simpler workload.RESULT: Allows a permanent rationalisation ofthe use of the analytical platformGraph analytics performed on database

31、queries results in an interactive map of the warehouse highlighting dataset usage.Datasets integral to theEnterprise Data Warehouse.New Analytics for IT36日程Analytics everywhereEverything has its own timeThe Value of the Speed ofAnalyticsAnalytics and AgilityExamplesHot Data Monetization Practice in the Chinese market37挑戰(zhàn):從電信1.0 to 電信2.0, CS

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論