體育統(tǒng)計(jì)正態(tài)分布_第1頁
體育統(tǒng)計(jì)正態(tài)分布_第2頁
體育統(tǒng)計(jì)正態(tài)分布_第3頁
體育統(tǒng)計(jì)正態(tài)分布_第4頁
體育統(tǒng)計(jì)正態(tài)分布_第5頁
已閱讀5頁,還剩38頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、體育統(tǒng)計(jì)正態(tài)分布第1頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日一、概率與頻率必然現(xiàn)象:在一定條件下一定發(fā)生的現(xiàn)象。必然事件:必然現(xiàn)象的結(jié)果。不可能事件:在一定條件必然不會發(fā)生的事情。例:(1)在標(biāo)準(zhǔn)大氣壓下,純水加熱到100攝氏度,必然會沸騰。 (2)投出去的標(biāo)槍必然會落到地面上。第2頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日隨機(jī)事件隨機(jī)現(xiàn)象:在一定條件下可能發(fā)生或可能不發(fā)生的現(xiàn)象稱為隨機(jī)現(xiàn)象。隨機(jī)試驗(yàn):任何一個試驗(yàn),滿足: (1)可在相同條件下重復(fù)進(jìn)行; (2)每次試驗(yàn)得到多個結(jié)果; (3)每次試驗(yàn)前不能肯定這次試驗(yàn)將得到什么結(jié)果。例: 投擲硬幣觀察哪一面向上

2、,要求某學(xué)生投籃并了解其投籃技術(shù),均為做了一次試驗(yàn)。擲硬幣投籃均為隨機(jī)試驗(yàn)。第3頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日隨機(jī)事件:隨機(jī)試驗(yàn)的結(jié)果稱稱為隨機(jī)事件。一般以大寫英文字母A、B、C等表示。 例:(1)投籃:投中、投不中是兩個隨機(jī)事件。 (2)擲骰子:1點(diǎn),2點(diǎn),6點(diǎn),點(diǎn)數(shù) 大于3,點(diǎn)數(shù)為奇數(shù),等等均為隨機(jī)事件。第4頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日隨機(jī)事件的概率頻率:隨機(jī)事件A在n次重復(fù)實(shí)驗(yàn)中發(fā)生了m次則比值m/n稱為隨機(jī)事件A的頻率。記作:W(A)=m/n。含義:反映隨機(jī)事件發(fā)生的頻繁程度。頻率的穩(wěn)定性:隨著試驗(yàn)次數(shù)的增加,隨機(jī)事件的頻率逐漸

3、穩(wěn)定在某一個常數(shù)附近,這一特性稱為頻率的穩(wěn)定性。 第5頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日投硬幣次數(shù)正面向上頻率10440%1004545%20010552.5%50024048%100049549.5%10000502550.25%例:數(shù)學(xué)家貝努里關(guān)于拋硬幣的實(shí)驗(yàn)。第6頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日概率:隨機(jī)事件A的頻率W(A)隨著試驗(yàn)次數(shù)的變化而變化,當(dāng)n充分大時,頻率W(A)越來越接近于一個常數(shù)p則這個常數(shù)p成為隨機(jī)事件A的概率,記作p(A)即 隨機(jī)事件A的概率的取值范圍(0,1)第7頁,共43頁,2022年,5月20日,23點(diǎn)15分,星

4、期日概率與頻率的區(qū)別和聯(lián)系(1)概率準(zhǔn)確地反映隨機(jī)現(xiàn)象的內(nèi)在規(guī)律,往往是未知的;頻率是通過隨機(jī)現(xiàn)象反映其內(nèi)在規(guī)律,試驗(yàn)后,便是己知的。(2)概率是事件發(fā)生的可能性大小的量度,不隨試驗(yàn)次數(shù)的變化而變化,只要條件不變,每次試驗(yàn)中某事件發(fā)生的概率都是一樣的;而頻率隨試驗(yàn)次數(shù)的變化而變化,具有隨機(jī)性。(3)隨著試驗(yàn)次數(shù)的增大,頻率呈現(xiàn)出穩(wěn)定的趨勢,圍繞著概率波動,并隨試驗(yàn)次數(shù)的無限增大,頻率以概率為極限,所以,當(dāng)試驗(yàn)次數(shù)n很大時,人們往往用頻率 去近似代替概率P。第8頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日小概率事件原則小概率事件:概率必須很小,那么,究竟要小到什么程度?在體育統(tǒng)計(jì)中

5、一般認(rèn)為在0.05以下為小。小概率事件原則:小概率事件在一次試驗(yàn)中是不會發(fā)生的。 一次試驗(yàn):若多次試驗(yàn),盡管是小概率事件,也很可能發(fā)生。原則:這是個原則,不是定理,有人為規(guī)定的含義,存在犯錯誤的風(fēng)險(xiǎn),但是犯錯誤的概率又是小概率。所以人們共同遵循。 第9頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日二、正態(tài)分布正態(tài)分布:靠近均數(shù)分布的頻數(shù)最多,離開均數(shù)越遠(yuǎn),分布的數(shù)據(jù)越少,左右兩側(cè)基本對稱,這種中間多、兩側(cè)逐漸減少的基本對稱的分布,稱為正態(tài)分布。正態(tài)分布是應(yīng)用最廣泛的一種連續(xù)型分布。正態(tài)分布在十九世紀(jì)前葉由高斯加以推廣,所以通常稱為高斯分布。第10頁,共43頁,2022年,5月20日

6、,23點(diǎn)15分,星期日身高的分布(a)(b)(d)(c)第11頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)分布的概率密度函數(shù) 如果隨機(jī)變量X的概率密度函數(shù) 則稱X服從正態(tài)分布,記作XN(,2),其中, 為分布的均數(shù), 為分布的標(biāo)準(zhǔn)差。 (- X +) 第12頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)分布圖示x0.1.2.3.4f(x)第13頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)曲線:是一條中央高,兩側(cè)逐漸下降、低平,兩端無限延伸,與橫軸相靠而不相交,左右完全對稱的鐘形曲線,稱為正態(tài)曲線。 正態(tài)分布是對稱分布,但是對稱分布不一定是正態(tài)

7、分布。第14頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)分布曲線的性質(zhì)(1)曲線在X軸上方,X軸是他的一條水漸近線。(2)它的圖像是由兩個參數(shù)決定的: 均數(shù)決定他的位置,即在圖像在x=處對稱,并且在該處取到最大值。 標(biāo)準(zhǔn)差決定他的形狀,標(biāo)準(zhǔn)差越小,圖像越瘦高;標(biāo)準(zhǔn)差越大,圖像越扁平。(3)曲線與X軸之間的面積等于1。第15頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日方差相等、均數(shù)不等的正態(tài)分布圖示312第16頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日均數(shù)相等、方差不等的正態(tài)分布圖示213第17頁,共43頁,2022年,5月20日,23點(diǎn)15分,星

8、期日 max(1)y2y1的含義。 表示x2處數(shù)據(jù)分布的密集程度大于x1處。由于均數(shù)的含義可知均數(shù)是一組數(shù)據(jù)中分布最密集的位置,所以在均數(shù)處取到最大值。(2)陰影部分面積的含義? 表示落入x1與x2之間的數(shù)據(jù)占總體的百分比。(3)為什么標(biāo)準(zhǔn)差越小,圖像越瘦高?(定性分析) 因?yàn)闃?biāo)準(zhǔn)差越小,說明數(shù)據(jù)分布的密集程度就越大,那么落入x1和x2之間的數(shù)據(jù)就增加,那么陰影部分的面積就增加,而區(qū)間長度不變,所以圖像只能向高處發(fā)展。第18頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日標(biāo)準(zhǔn)正態(tài)分布標(biāo)準(zhǔn)正態(tài)分布是均數(shù)為0,標(biāo)準(zhǔn)差為1的正態(tài)分布。記為N(0,1)。標(biāo)準(zhǔn)正態(tài)分布是一條曲線。概率密度函數(shù):

9、 (- u +) 第19頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)分布轉(zhuǎn)換為標(biāo)準(zhǔn)正態(tài)分布若 XN(,2),作變換: 則u服從標(biāo)準(zhǔn)正態(tài)分布。u稱為標(biāo)準(zhǔn)化公式(把一般的正態(tài)分布轉(zhuǎn)化成標(biāo)準(zhǔn)正態(tài)分布)?;虻?0頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日標(biāo)準(zhǔn)正態(tài)分布的重要性一般的正態(tài)分布取決于均值和標(biāo)準(zhǔn)差 計(jì)算概率時 ,每一個正態(tài)分布都需要有自己的正態(tài)概率分布表,這種表格是無窮多的若能將一般的正態(tài)分布轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布,計(jì)算概率時只需要查一張表。第21頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日標(biāo)準(zhǔn)正態(tài)分布表(p287、288) u 0.00 -0.02

10、 -0.04 -0.06 -0.08-3.00.00130.00130.00120.00110.0010-2.50.00620.00590.00550.00520.0049-2.00.02280.02170.02070.01970.0188-1.90.02870.02740.02620.02500.0239-1.60.05480.05260.05050.04850.0465-1.00.15870.15390.14920.14460.1401-0.50.30850.30150.29460.28770.2810 00.50000.49200.48400.47610.46810u例:P(u-1.96

11、)=0.0250P(u-1.64)=0.0505第22頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日例1、 求p(u0.96) 。0.96查表: p(u0.96) 。0.96查表:p(u0.96) =1- p(u0.96) =1 - 0.8315=0.1685第24頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日例3、 已知a=0.14、b=1.52,求p(0.14u1.52) 。0.141.52查表:p(0.14u1.52)=p(u1.52)- p(u0.14)=0.9357 - 0.5557=0.38第25頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日(2

12、)已知u落在某個區(qū)間的概率p0,求u。例4:p(ux)=0.8315,求x。xP=0.8315查表:已知:p(u0.96)=0.8315所以:x=0.96第26頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日例5:p(ux)=0.7141,求x。 xP=0.7141查表可知:P(u0.56)=0.7123,即p1=0.7123時,x1=0.56P(u0.57)=0.7157,即p2=0.7157時,x2=0.57第27頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日插值公式:把 p1=0.7123時,x1=0.56 p2=0.7157時,x2=0.57 帶入得:第28頁,共

13、43頁,2022年,5月20日,23點(diǎn)15分,星期日(3)已知x值,求x落在某個區(qū)間的概率.例6:已知xN(10,9),求p(x13)。10 13解:先標(biāo)準(zhǔn)化查表得第29頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日(4)已知x落在某個區(qū)間的概率p0,求x.例7:已知XN(10,4),P(Xx)=0.8,求x。 10 x解:先查表得 P(u0.84)=0.79950.8 由標(biāo)準(zhǔn)化公式可知:u=0.84所以:第30頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日總結(jié)關(guān)于查表的四種情況(1)已知u值,求u落在某個區(qū)間的概率值。(2)已知u落在某個區(qū)間的概率p0,求u。第31頁

14、,共43頁,2022年,5月20日,23點(diǎn)15分,星期日(3)已知x值,求x落在某個區(qū)間的概率值。(4)已知x落在某個區(qū)間的概率p0,求x。第32頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)曲線下的常用面積-1.96+1.962.5%2.5%95%第33頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)曲線下的常用面積-1.64+1.645%5%90%第34頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)曲線下的常用面積-2.58+2.580.5%0.5%99%第35頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日正態(tài)分布的應(yīng)用(1)利用正

15、態(tài)分布估計(jì)實(shí)際情況 例9:某大型網(wǎng)球中心,每天接待的人數(shù)x服從正態(tài)分布,其均數(shù)=800 人,標(biāo)準(zhǔn)差=150 人,試求:每天接待人數(shù)在 6501000人之間的概率。第36頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日解: 6508001000先標(biāo)準(zhǔn)化:查表:第37頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日(2)確定參考值范圍例9、現(xiàn)有10000名成年男子,假定身高服從正態(tài)分布,其均數(shù)=175厘米,標(biāo)準(zhǔn)差=15 厘米。 估計(jì)這些人中,以均數(shù)為中心,概率為75%的身高區(qū)間是多少?第38頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日 x標(biāo)準(zhǔn)化公式:175y黃色陰影部分面積為0.3751u解:查表得: P(u-1.15)=0.1251所以:u1=-1.15第39頁,共43頁,2022年,5月20日,23點(diǎn)15分,星期日(3)用正態(tài)分布比較不同運(yùn)動項(xiàng)目成績的優(yōu)劣例10:某人推鉛球的成績?yōu)?5.9米,另一人的400米跑成績?yōu)?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論