版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知a,b是兩條不同的直線,是兩個不同的平面,且,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件2下列四個結論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則 (3)已知回歸直線的斜率的估計值是2
2、,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A1B2C3D43已知集合,將集合的所有元素從小到大一次排列構成一個新數(shù)列,則( )A1194B1695C311D10954設集合,則( )ABCD5已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為( )ABC0D6已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是( )ABCD7若將函數(shù)的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A函數(shù)在上單調(diào)遞增B函數(shù)的周期是C函數(shù)的圖象關于點對稱D函數(shù)在上最大值是18已知數(shù)列是公差為的等差數(shù)列,且
3、成等比數(shù)列,則( )A4B3C2D19在函數(shù):;中,最小正周期為的所有函數(shù)為( )ABCD10如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A72B64C48D3211已知,則的最小值為( )ABCD12趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為周髀算經(jīng)一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1),類比“趙爽弦圖”,可類似地構造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正
4、六邊形中隨機取一點,則此點取自小正六邊形的概率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13的展開式中的系數(shù)為_.14若關于的不等式在上恒成立,則的最大值為_15記復數(shù)za+bi(i為虛數(shù)單位)的共軛復數(shù)為,已知z2+i,則_16已知復數(shù)(為虛數(shù)單位),則的共軛復數(shù)是_,_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)設函數(shù).()討論函數(shù)的單調(diào)性;()如果對所有的0,都有,求的最小值;()已知數(shù)列中,且,若數(shù)列的前n項和為,求證:.18(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,且,求BD的長度
5、.19(12分)聯(lián)合國糧農(nóng)組織對某地區(qū)最近10年的糧食需求量部分統(tǒng)計數(shù)據(jù)如下表:年份20102012201420162018需求量(萬噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關關系,我們以“年份2014”為橫坐標,“需求量”為縱坐標,請完成如下數(shù)據(jù)處理表格:年份20140需求量2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國糧農(nóng)組織計劃向該地區(qū)投放糧食300萬噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: ,.20(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;
6、(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,的斜率按某種排序能構成等比數(shù)列?若能,求出的方程,若不能,請說理由.21(12分)某生物硏究小組準備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態(tài)分布,服從正態(tài)分布.()從該地區(qū)的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;()記該地區(qū)蜻蜓的翼長為隨機變量,若用正態(tài)分布來近似描述的分布,請你根據(jù)()中的結果,求參數(shù)和的值(精確到0.1);()在()的條件下
7、,從該地區(qū)的蜻蜓中隨機捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學期望(分布列寫出計算表達式即可).注:若,則,.22(10分)已知各項均不相等的等差數(shù)列的前項和為, 且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎題.2C【解析】由題意,(1)中,
8、根據(jù)全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以 是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件【點睛】本題
9、主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題3D【解析】確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和【詳解】時,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以故選:D【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎解題關鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的4C【解析】解對數(shù)不等式求得集合,由此求得兩個集
10、合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運算,屬于基礎題.5C【解析】先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調(diào)遞增,且,所以當時,;當時,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉化思想和運算能力,屬于難題.6A【解析】由題知,利用求出,再根據(jù)題給
11、定義,化簡求出的解析式,結合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以 的周期為, 則, 所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關鍵是對新定義的理解.7A【解析】根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調(diào)遞增,正確;關于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調(diào)遞增 在上單調(diào)遞增,正確;的最小正周期為: 不是
12、的周期,錯誤;當時,關于點對稱,錯誤;當時, 此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).8A【解析】根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.9A【解析】逐一考查所給的函數(shù): ,該函數(shù)為偶函數(shù),周期 ;將函數(shù) 圖象x軸下方的圖象向上翻折即可得到 的圖象,該函數(shù)的周期為 ;函
13、數(shù)的最小正周期為 ;函數(shù)的最小正周期為 ;綜上可得最小正周期為的所有函數(shù)為.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤一般地,經(jīng)過恒等變形成“yAsin(x),yAcos(x),yAtan(x)”的形式,再利用周期公式即可10B【解析】由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c睛】本題考
14、查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解。11B【解析】 ,選B12D【解析】設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概
15、率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。1328【解析】將已知式轉化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數(shù),關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.14【解析】分類討論,時不合題意;時求導,求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉化為函數(shù)最小值,化簡得,構造放縮函數(shù)對自變量再研
16、究,可解,【詳解】令;當時,不合題意;當時,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,則,即.當時,當時,則.設,則.當時,;當時,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為: 【點睛】本題考查不等式恒成立問題. 不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍利用導數(shù)解決此類問題可以運用分離參數(shù)法; 如果無法分離參數(shù),可以考慮對參數(shù)或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解1534i【解析】計算得到z2(2+i)23+4i,
17、再計算得到答案.【詳解】z2+i,z2(2+i)23+4i,則故答案為:34i【點睛】本題考查了復數(shù)的運算,共軛復數(shù),意在考查學生的計算能力.16 【解析】直接利用復數(shù)的乘法運算化簡,從而得到復數(shù)的共軛復數(shù)和的?!驹斀狻浚瑒t復數(shù)的共軛復數(shù)為,且.故答案為:;.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎的計算題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17()函數(shù)在上單調(diào)遞減,在單調(diào)遞增;();()證明見解析【解析】()先求出函數(shù)f(x)的導數(shù),通過解關于導數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;()設g(x)f(x)ax,先求出函數(shù)g(x)的導數(shù),通
18、過討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;()先求出數(shù)列是以為首項,1為公差的等差數(shù)列,問題轉化為證明:,通過換元法或數(shù)學歸納法進行證明即可【詳解】解:() f(x)的定義域為(1,+),當時,f(x)2,當時,f(x)2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增()設,則,因為x2,故,()當a1時,1a2,g(x)2,所以g(x)在2,+)單調(diào)遞減,而g(2)2,所以對所有的x2,g(x)2,即f(x)ax;()當1a1時,21a1,若,則g(x)2,g(x)單調(diào)遞增,而g(2)2,所以當時,g(x)2,即f(x)ax;()當a1時,1a1,g(x)2,所以g(x)在2,+)單
19、調(diào)遞增,而g(2)2,所以對所有的x2,g(x)2,即f(x)ax;綜上,a的最小值為1()由(1an+1)(1+an)1得,anan+1anan+1,由a11得,an2,所以,數(shù)列是以為首項,1為公差的等差數(shù)列,故,由()知a1時,x2,即,x2法一:令,得,即因為,所以,故法二:下面用數(shù)學歸納法證明(1)當n1時,令x1代入,即得,不等式成立(1)假設nk(kN*,k1)時,不等式成立,即,則nk+1時,令代入,得,即:,由(1)(1)可知不等式對任何nN*都成立故考點:1利用導數(shù)研究函數(shù)的單調(diào)性;1、利用導數(shù)研究函數(shù)的最值; 3、數(shù)列的通項公式;4、數(shù)列的前項和;5、不等式的證明18(1
20、)(2)【解析】(1)根據(jù)共線得到,利用正弦定理化簡得到答案.(2)根據(jù)余弦定理得到,再利用余弦定理計算得到答案.【詳解】(1)與共線,.即,即,.(2),在中,由余弦定理得:,.則或(舍去).,.在中,由余弦定理得:,.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學生的綜合應用能力.19(1)見解析;(2)能夠滿足.【解析】(1)根據(jù)表中數(shù)據(jù),結合以“年份2014”為橫坐標,“需求量”為縱坐標的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預測2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對數(shù)據(jù)處理表格如下:年份2014024需求量25701929(2)由題意可知,變量與之間具有線性相關關系,由(1)中表格可得,.由上述計算結果可知,所求回歸直線方程為,利用回歸直線方程,可預測2020年的糧食需求量為:(萬噸),因為,故能夠滿足該地區(qū)的糧食需求.【點睛】本題考查了線性回歸直線的求法及預測應用,屬于基礎題.20(1);(2)不能,理由見解析【解析】(1)設,則,由此即可求出橢圓方程;(2)設直線的方程為,聯(lián)立直線與橢圓的方程可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園應急預案解讀
- 食品安全伴我行
- 認識銷售課件教學課件
- 假如課件教學課件
- 高三化學一輪復習 第一章 離子反應 離子方程式 課件
- 稻田餐廳課件教學課件
- 3.1.1鐵及鐵的氧化物 課件 高一上學期化學人教版(2019)必修第一冊
- 2.2化學平衡 課件高二上學期化學人教版(2019)選擇性必修1
- 成人夏季食品安全教育
- 企業(yè)宿舍管理培訓
- 安安全全坐火車PPT課件
- 交通事故責任劃分圖例
- 六年級上冊數(shù)學比的計算題
- 第三方破壞事故分析與對策
- 投標保證金退付申請書四篇
- 鉆井常用計算公式
- 混凝土澆筑監(jiān)理旁站記錄(完整)
- 創(chuàng)傷的救治流程PPT課件
- 上公司財務風險分析與防范——以蘇寧云商為例
- 價值觀考核評定表
- 球罐施工技術方案(完整版)
評論
0/150
提交評論