版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點
2、,若,且,則雙曲線的離心率為( )ABCD2已知集合,則為( )A0,2)B(2,3C2,3D(0,23已知定義在上的奇函數(shù)滿足,且當時,則( )A1B-1C2D-24甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結(jié)果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結(jié)論正確的是( )A丙被錄用了B乙被錄用了C甲被錄用了D無法確定誰被錄用了5如圖,在中,是上一點,若,則實數(shù)的值為( )ABCD6拋物線的焦點為,準線為,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是( )ABCD7已知函數(shù)的最小正周期為的圖象
3、向左平移個單位長度后關于軸對稱,則的單調(diào)遞增區(qū)間為( )ABCD8若函數(shù)在時取得最小值,則( )ABCD9已知拋物線經(jīng)過點,焦點為,則直線的斜率為( )ABCD10在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則( )ABCD11的二項展開式中,的系數(shù)是( )A70B-70C28D-2812已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關系為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為_.14直線是曲線的一條切線為自然對數(shù)的底數(shù)),則實數(shù)_.15的展開式中,項的系數(shù)是_16如圖所
4、示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、為頂點的四面體的外接球的體積為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每 件產(chǎn)品檢驗合格與否相互獨立若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢 驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此
5、,每一組產(chǎn)品只需檢驗次或次設該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次 數(shù)為 (1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù)18(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.19(12分)已知,函數(shù)(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值20(12分)已知()過點,且當時,函數(shù)取得最大值1.(1)將函數(shù)的圖象向右平移個單位得到函數(shù),求函數(shù)的表達式;(2)在(1)的條件下,函數(shù),求在上的值域.21(12分)已知橢圓C:()的左、右焦點分別為,離心
6、率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.22(10分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調(diào)查中,共調(diào)查了人,其中女性人,男性人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。
7、1D【解析】過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,., ,為的中點,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.2B【解析】先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的
8、定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.3B【解析】根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x0,1時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1【詳解】是定義在R上的奇函數(shù),且;的周期為4;時,;由奇函數(shù)性質(zhì)可得;時,;.故選:B.【點睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.4C【解析】假設若甲被錄用了,若
9、乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.5C【解析】由題意,可根據(jù)向量運算法則得到(1m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,又,所以,(1m),又t,所以,解得m,t,故選C【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.6B【解析】試題分析
10、:設在直線上的投影分別是,則,又是中點,所以,則,在中,所以,即,所以,故選B考點:拋物線的性質(zhì)【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常常考慮用拋物線的定義進行問題的轉(zhuǎn)化象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉(zhuǎn)化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系7D【解析】先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象
11、向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以, 因為的遞增區(qū)間是:,由,得:,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.8D【解析】利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時的值【詳解】解:,其中,故當,即時,函數(shù)取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應用,屬于基礎題9A【解析】先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,故選:A【點睛】考查拋物線的基礎知識
12、及斜率的運算公式,基礎題.10B【解析】設,則,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設,則,因為B,P,D三點共線,C,P,E三點共線,所以,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.11A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A考點:二項式定理的應用12C【解析】可設,根據(jù)在上為偶函數(shù)及便可得到:,可設,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據(jù)條件,;若,且,則:;在上是減函
13、數(shù);在上是增函數(shù);所以,故選:C【點睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設,通過條件比較與,函數(shù)的單調(diào)性的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關系,然后推出關系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為, 的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎題.14【解析】根據(jù)切線的斜率為,利用導數(shù)列方程,由此求得切點的坐標,進而求
14、得切線方程,通過對比系數(shù)求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導數(shù)求解曲線的切線方程有關問題,屬于基礎題.15240【解析】利用二項式展開式的通項公式,令x的指數(shù)等于3,計算展開式中含有項的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點睛】本題主要考查二項式展開式的通項公式及簡單應用,相對不難.16【解析】將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接
15、球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次【解析】(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為 和,故的分布列為由記,因為,所以 在上單調(diào)遞增 ,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當且取最小值時,該方案最合理,因為,所以
16、時平均檢驗次數(shù)最少,約為次【點睛】本題考查了離散型隨機變量的分布列、數(shù)學期望,考查了分析問題、解決問題的能力,屬于中檔題.18特征值為1,特征向量為【解析】設出矩陣M結(jié)合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設矩陣M,則AM,所以,解得,所以M,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x0,所以屬于特征值的的一個特征向量為【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關鍵是明確其運算規(guī)則,側(cè)重考查數(shù)學運算的核心素養(yǎng).19(1);(2).【解析】(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可得
17、出函數(shù)的單調(diào)遞增區(qū)間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當時,由,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2),【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵,屬中等題20 (1);(2).【解析】試題分析:(1)由題意可得函數(shù)f(x)的解析式為,則.(2)整理函數(shù)h(x)的解析式可得:,結(jié)合函數(shù)的定義域可得函數(shù)的值域為.試題解析:(1)由函數(shù)取得最大值1,可得,函數(shù)過得,.(2) ,值域為.21(1)(2)直線l的斜率為或【解析】(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯(lián)立, 轉(zhuǎn)化為,借助向量的數(shù)量積的坐標表示,及韋達定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,則由方程組消去y得,所以,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.22(1)圖形見解析,理由見解析;(2)見解析;(3)犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關系【解析】(1)利用等高條形圖中兩個深顏色條的高比較得出性別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025正式鐵路運輸代理合同模板
- 2025廠房租賃合同版
- 上海思博職業(yè)技術學院《設計史》2023-2024學年第一學期期末試卷
- 2025訂餐服務合同參考范文
- 冰球教練述職報告范文
- 危險因素報告范文大全
- 上海師范大學《化工安全與環(huán)保》2023-2024學年第一學期期末試卷
- 上海思博職業(yè)技術學院《刑法案例研討》2023-2024學年第一學期期末試卷
- 課題申報書:高校思想政治理論課提升大學生歷史自信的機制與路徑研究
- 課題申報書:非洲區(qū)域性國際組織語言政策研究
- 期末復習試題(試題)-2024-2025學年五年級上冊數(shù)學 北師大版
- 多無人機路徑規(guī)劃
- 河南省鄭州市2023-2024學年四年級上學期語文期末試卷(含答案)
- 2024年便利店營業(yè)員工作總結(jié)范文(2篇)
- 工會新聞寫作培訓課題
- 統(tǒng)計年報和定報培訓
- 小說改編權改編作品轉(zhuǎn)讓合同
- 隧道坍塌應急演練
- 物流行業(yè)物流供應鏈金融服務方案
- 浙江省杭州市2023-2024學年高二上學期期末學業(yè)水平測試政治試題 含解析
- 體育賽事消防應急預案制定
評論
0/150
提交評論