![微積分第五章課件 Integrals_第1頁(yè)](http://file4.renrendoc.com/view/306534f6dadd60f41ef3fa44a933dfb9/306534f6dadd60f41ef3fa44a933dfb91.gif)
![微積分第五章課件 Integrals_第2頁(yè)](http://file4.renrendoc.com/view/306534f6dadd60f41ef3fa44a933dfb9/306534f6dadd60f41ef3fa44a933dfb92.gif)
![微積分第五章課件 Integrals_第3頁(yè)](http://file4.renrendoc.com/view/306534f6dadd60f41ef3fa44a933dfb9/306534f6dadd60f41ef3fa44a933dfb93.gif)
![微積分第五章課件 Integrals_第4頁(yè)](http://file4.renrendoc.com/view/306534f6dadd60f41ef3fa44a933dfb9/306534f6dadd60f41ef3fa44a933dfb94.gif)
![微積分第五章課件 Integrals_第5頁(yè)](http://file4.renrendoc.com/view/306534f6dadd60f41ef3fa44a933dfb9/306534f6dadd60f41ef3fa44a933dfb95.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Chapter 5 Integrals5.1 Areas and Distance5.2 The Definite Integral5.3 The Fundamental Theorem of Calculus5.4 Indefinite Integrals and the Net Change Theorem5.5 The Substitution Rule5.6 The Logarithm Defined as an Integral5.1 Areas and Distances The area problem 1. Areas of curved trapezoidSuppose th
2、e curved trapezoid is bounded byandFind the area of A .Area of rectangleArea of trapezoidMethod:1) Partition:Use the linesto divide A into small curved trapezoid;2) Approximation:Base:Height:We can approximateSmall rectangle:3) Sum:4) Limit:Letthen the area of the curved trapezoid is:Riemann sum2. D
3、istanceandFind the total distance s.Method:1) Partition:2) Approximation:We get SupposeSuppose the distance over3) Sum:4) Limit:Common characteristic of the above problems is:1) The process is the same :“Partition, Approximation, Sum, Limit ”2) The limit forms are the same: Both are the limits of Ri
4、emann sumsRiemann sum5.2 The definition of integral The definition of integralalways tends to I , We say that I is the integral of That is Then we say that f ( x ) is integrable on a , b .denote it bywhere:integral signf(x) : integranda : lower limit of integrationb : upper limit of integration The
5、procedure of calculating an integral is called integration.Caution:The definite integral is a number; it does not depend on x. In fact ,we could use any letter in place of x without changing the value of the integral: where x is a dummy variable.Geometric interpretation:the area of the region:the ne
6、gative of the area of the region:the algebraic sum of the oriented area, or the net area.Theorem1.Theorem2.and have only finite discontinuities on a,b The sufficient condition of integrability:is integrable on is integrable on Example 1. Use the definition to evaluateSolution:UseWe choose to divide
7、0, 1 into n subintervals of equal width.Example 2. Use the definition to evaluateSolution:UseWe choose to divide 1, 3 into n subintervals of equal width.Solution:Use the integral to denote the following limits:Use the geometric meaning to evaluate:The Midpoint RuleProperties of the definite integral
8、When we defined the definite integral . we implicitly assumed that ab.Notice that if we reverse a and b ,then change (b-a)/n from to (a-b)/n .ThereforeProperties of the integral( k is a constant)Proof:( c is a constant) Example: Use the properties of integrals to evaluate Comparison Properties of th
9、e integral:The next theorem is called Mean Value Theorem for Definite Integrals. Its geometric interpretation is that, for a continuous positive f(x) on a, b, there is a number c in a, b such that the rectangle with base a, b and height f(c) has the same area as the region under the graph of f(x) fr
10、om a to b.oabxycf(x)Theorem If f(x) is continuous on a, b, then there exists at least a number c in (a, b) such thatThe number is called the average value of f(x) on a, b.Proof If f(x) is a constant function, the result is true. Next we assume that f(x) is not a constant function. Since f(x) is cont
11、inuous on a, b, f(x) takes on the minimum and the maximum values on a, b. Let f(u) = m and f(v) = M be the minimum and the maximum values of f(x) on a, b, respectively. Then m f(x) M for some x in a, b because f(x) is not constant. Therefore, we have It follows that The preceding inequalities indica
12、te that the number is between m =f(u) and M =f(v). Thus the Intermediate Value Theorem leads that there is a number c between u and v such that Multiplying the both sides by b-a gives the conclusion of the theorem. 5.3 The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus The funda
13、mental Theorem of Calculus is appropriately named because it establishes a connection between the two branches to Calculus: differential calculus and integral calculus. Differential calculus arose from the tangent problem, whereas integral calculus arose from a seemingly unrelated problem ,the area
14、problem.The Fundamental Theorem of Calculus gives the precise relationship between the derivative and the integral.Newtons teacher at Cambridge, Issac Barrow discovered that the two problem are actually closely related. In fact ,he realized that differentiation and integration are inverse processes.
15、It was Newton and Leibniz who exploited this precise relationship and use it to develop calculus into a systematic mathematical method.In particular, they saw that the Fundamental Theorem enabled them to compute areas and integrals very easily without having to compute them as limits of sums.The fir
16、st part of the Fundamental Theorem deals with functions defined by an equation of the formwhere f is a continuous function on a,b and x varies between a and b .Observe that g depends only on x ,which appears as the variable upper limit in the integral.If x is a fixed number ,then the integral is a d
17、efinite number.If we then let x vary ,the number also varies and defines a function of x by g(x).baxf(t)The Fundamental Theorem of Calculus, Part IProof:thenThe Fundamental Theorem of Calculus, Part 2Proof:According to part 1,sosowe havedenoteWhy?Summary:We end this section by bringing together the
18、two parts of the Fundamental Theorem.5.4 Indefinite Integrals and the Net Change Theorem Indefinite Integrals and the Net Change TheoremAn indefinite integral of f(x) represent an entirely family of functions whose derivative is f(x) and is denoted bySuppose that F(x) is an antiderivative of f(x), t
19、hen according to the theorem in 4.2, we know that any antiderivative G(x) of f(x) can be written as G(x)=F(x)+CThen:Caution: 1) You should distinguish carefully between definite and indefinite integrals. A definite integral is a number, whereas an indefinite integral is a function (a family of funct
20、ions). 2) The connection is the fundamental theorem:Table of Indefinite integrals From the above definition ,we known that:oror( k is a constant)ororExample 1:Sulotion: = Example 2: Solution: =The properties of Indefinite IntegralsCorollary: IfthenExample 3: Solution: =Example 4:Solution: =Example 5
21、:Solution: =Example: Solution: =Application:The Net Change Theorem The integral of a rate of change is the net change:Example 6 A particle moves along a line so that its velocity at time t is 1) Find the displacement of the particle during the time period 2)Find the distance traveled during the time
22、 period.Solution:5.5 The Substitution RuleThe Substitution RuleExample: The Substitution Rule:Suppose( )Exampe 1 Example 2 Example 3Example 4 Example 5 (1).(2). (3 ).Ex6Ex7Definite IntegralsThe Substitution Rule for Definite IntegralsIf is continuous on a,b and f is continuous on the range of u=g(x), thenProof: Suppose F be an antiderivative of f. Then F(g(x) is an antid
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能家居系統(tǒng)集成工程承包合同范本
- 2025年度建筑園林景觀工程零星合同標(biāo)準(zhǔn)
- 衢州浙江衢州江山市交投人力資源有限公司勞務(wù)派遣人員招聘筆試歷年參考題庫(kù)附帶答案詳解
- 葫蘆島2024年遼寧葫蘆島市綏中縣教育局赴高等院校招聘教師92人筆試歷年參考題庫(kù)附帶答案詳解
- 秦皇島2025年天津市腫瘤醫(yī)院秦皇島醫(yī)院招聘人事代理人員15人筆試歷年參考題庫(kù)附帶答案詳解
- 甘肅2025年甘肅煤田地質(zhì)局一四九隊(duì)招聘筆試歷年參考題庫(kù)附帶答案詳解
- 珠海廣東珠海高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)創(chuàng)新創(chuàng)業(yè)服務(wù)中心招聘4名合同制職員筆試歷年參考題庫(kù)附帶答案詳解
- 河南2025年河南科技大學(xué)第一附屬醫(yī)院招聘筆試歷年參考題庫(kù)附帶答案詳解
- 棗莊2025年山東棗莊市疾病預(yù)防控制中心高層次急需緊缺人才招聘筆試歷年參考題庫(kù)附帶答案詳解
- 杭州浙江杭州市明遠(yuǎn)未來(lái)幼兒園編外教師招聘筆試歷年參考題庫(kù)附帶答案詳解
- 2023年考研考博考博英語(yǔ)福建師范大學(xué)考試高頻考點(diǎn)參考題庫(kù)帶答案
- DLT1123-2023年《火力發(fā)電企業(yè)生產(chǎn)安全設(shè)施配置》
- 新人教版八年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案-八年級(jí)下冊(cè)人教版全冊(cè)教案
- 山西陽(yáng)城陽(yáng)泰集團(tuán)西馮街煤業(yè)有限公司煤炭資源開發(fā)利用方案和礦山環(huán)境保護(hù)與土地復(fù)墾方案
- 初中語(yǔ)文期末考試試卷分析
- 金鎖記優(yōu)秀課件
- 安徽華星化工有限公司殺蟲單廢鹽資源化處理項(xiàng)目環(huán)境影響報(bào)告書
- 人教版高中英語(yǔ)必修一單詞表(默寫版)
- 海德堡HRT共焦激光角膜顯微鏡
- 世界國(guó)家地區(qū)區(qū)域劃分 Excel對(duì)照表 簡(jiǎn)
- 幼兒園手工教學(xué)中教師指導(dǎo)行為研究-以自貢市幼兒園為例
評(píng)論
0/150
提交評(píng)論