擬合garch模型及autoreg模型預測_第1頁
擬合garch模型及autoreg模型預測_第2頁
擬合garch模型及autoreg模型預測_第3頁
擬合garch模型及autoreg模型預測_第4頁
擬合garch模型及autoreg模型預測_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、 第五章SAS作業(yè)學號:200930980106姓名:何斌年級專業(yè):10級統(tǒng)計1班指導老師:肖莉問題1:試選擇恰當模型擬合某種股票的價格數(shù)據(jù),數(shù)據(jù)如下:10.510.449.9410.25119.8810.51213.9412.2512.6113.513.4412.4413.515.3915.7513.8814.515.516.1314.7511.7515.2517.1320.51921.520.2525.6326.8827.6323.882&382424.381利用擬合模型預測未來二期該股票的價格;2、按照書本相應例題的格式完成問題,并附上SAS程序。解:1.1建立數(shù)據(jù)集,繪制時序圖data

2、gupiao;inputvaluetime二n;cards;10.510.449.9410.25119.8810.51213.9412.2512.6113.513.4412.4413.515.3915.7513.8814.515.516.1314.7511.7515.2517.1320.51921.520.2525.6326.8827.6323.8826.382424.38procgplotdata=gupiao;plotvalue*time;symboli=joinv=starh=lci=redcv=blackw=2;run;L2輸出時序圖顯示該序列非平穩(wěn)。如圖1-1所示。圖1-1股票價格序

3、列的時序圖3對該序列進行一階差分運算,程序修改如下:datagupiao;inputvaluedifv=dif(value);time=_n_;cards;10510.449.9410.25119.881051213.9412.2512.6113.5134412.4413.515.3915.7513.8814515.516.1314.7511.7515.25171320.51921.520.2525.63268827.6323.882&382424.38procgplotdata=gupiao;plotdifv*time;symboli=joinv=starh=lci=redcv=blackw

4、=2;procarima;identifyvar=value(l)minicp=(0:5)q=(0:5);run; 1.4考査一階差分后序列的平穩(wěn)性。所得時序圖如圖1-2所示。圖1-2序列difv的時序圖時序圖顯示差分后序列difv沒有明顯的非平穩(wěn)特征。1.5序列d辻v的識別,如下圖所示。 CovarianceCorrelation-1987654321C)1234567891StdError3.5212571.000000-0.85681924333.*0.1690310.2948010.08372*0.1787591.476456.41930*0.1798761.4684670.41703

5、*0.205917-0.57304716274*0.2287780.5835960.16574*0.232062-1.092783.310340.2354200.0788680.022400.246832AutocorrelationsmrkstwostandarderrorsIg012345678LInverseAutocorrelationsLagCorraction-1987654321012345678911-0.0088720.11143*30.26772*4-0.28641*c*c*c*c*c50.1944560.04433*70.07494*S0.20365圖1-3序列cHfv的

6、自相關圖.偏自相關圖AutocorrelationCheckforWhiteNoise6ChL-ChiSqSquareDFAutocorrelations19.2860.0037-0.2430.084-0.4190.417-0.1630.166圖1-4殘差圖MA0FflA1MA2MA3MX4MA51230471.3251891.4143071.376S021.2328361.2&3827126874712838811.3256551.193191.2245111.325804135642713445541.4148541.287151.3110521.410&321204878110616S1

7、.1933031.291SS81.3&1TT81.3917331.0948111672311.2686741.3884221.3&12011.42721T116411912654611.345S931.3143541.3931.4&5095riknLinujnIntormatLonCntenongs012345LaARARARARARARErrorseriesmodel:AR(5)MinimumTableValue:BIC(4,0)=1.09431圖1-5最優(yōu)模型選擇識別部分的輸出結果顯示,1階差分后,序列difv為平穩(wěn)非白噪聲序列,最優(yōu)擬合模型為AR(4)模型。L6estimatep=4;對

8、序列Hfv擬合AR(4)模型。輸出結果顯示mu.ARI,RARI,2均不顯著,修改估計命令如下:estimatep=(3,4)noint;擬合結果顯示模型顯著且參數(shù)顯著。如圖1-6所示。ParajneterEstimateStaxilarAErrortValueApproxPr|t|LagARI,1-0.354230.14518-2.440.02023ARI,20.542810.154813.510.00134CoitiitionalLeastSquaresEstimation.VarianceEstimate2.44562StAErrorEstimate1.563848AIC132.5667

9、SBC135.6774ffujnberofResiAu.als35*AICandSBCAonotin.clu.AelogAeiermiitajit.AutocorrelationCheckofResidualsToChi-PrLagSquareDFChiSqAutocorrelat1ons61.4840.83010.1180.0140.0460.090-0.1060.026125.20100.8773-0.034-0.199-0.1230.050-0.0840.095186.43160.98280.0240.0240.1010.0490.0540.0412412.35220.94960.118

10、-0.042-0.0420.1450.1100.096ModelforvariablevalueFeriod(s)ofDifferencing1Nomeanterminthismodel.AutoregressiveFactorsFactor1:1+0.35423B*(3)-0.54281B*(4)圖1-6序列difv模型擬合結果輸出結果顯示,序列value的擬合模型為ARIMA(3,4),1,0)模型,模型口徑為:Vvt-tt1+0.35423B3-0.5428IB4或等價記為:Vt=Vt-035423叫_3+089704Ft_4-0.54281Ft_5+st(7表示股價價格)L7forec

11、astlead=2id=time;,利用擬合模型對序列乞作2期預測。如圖1-7所示。圖1-737期、38期股票價格預測(Forecast值)Fcrcstsf-orvri=iblv=aluOBsForecastSidError95%ConfidexterLimits3721.45891.563818.393824.52403823.85902.211619.324327.99371.8擬合圖:vaIue40-3020100010203040timePLOT*vaIueForecastforvaIueLower95HConfideneeLimiAUpper95%ConfidenceLimitSAS

12、程序:datagupiao;inputvalue00;difv=dif(value);time二n;MBFcards;10.510.449.9410.25119.8810.51213.9412.2512.6113.513.4412.4413.515.3915.7513.8814.515.516.1314.7511.7515.2517.1320.51921.520.2525.6326.8827.6323.8826.382424.38procgplotdata=gupiao;plotdifv*time;symboli=joinv=starh=lci=redcv=blackw=2;procarima

13、;identifyvar=value(l)minicp=(0:5)q=(0:5);estimatep=(3,4)noint;forecastlead=2id二timeout=resuIts;run;procprint;run;procgplot;plotvalue*time=lforecast*time=2195*time=3u95*time=3/overlaylegend;symbol1c=blacki=nonev=star;symbol2c=redi=joinv=nonew=2;symbol3c=greeni=joinv=none1=32;run;問題2:1867-1938年英國綿羊數(shù)量如

14、下所示:2203236022542165202420782214229222072119211921372132195517851747181819091958189219191853186819912111211919911859185619241892191619681928189818501841182418231843188019682029199619331805171317261752179517171648151213381383134413841484159716861707164016111632177518501809165316481665162717911選擇恰當模型,

15、擬合該序列的發(fā)展;2、利用擬合模型預測1938-1945年英國綿羊的數(shù)量;3、按照書本相應例題的格式完成問題,并附上SAS程序。解.1.;建立數(shù)據(jù)集,繪制時序圖datamianyang;inputx;t=n;cards;2203236022542165202420782214229222072119211921372132195517851747181819091958189219191853186819912111211919911859185619241892191619681928189818501841182418231843188019682029199619331805171317

16、26175217951717164815121338138313441384148415971686170716401611163217751850180916531648166516271791procgplotdata=mianyang;plotx*t;symboli=joinv=starci=redcv=blackw=2;run;1.2輸出時序圖顯示該序列非平穩(wěn)。如圖1-1所示。圖1-1綿羊數(shù)量序列X的時序圖13時序圖顯示序列具有顯著線性遞減的趨勢,且波動幅度隨時間遞增,所以考慮使用AUT0REG過程建立序列X關于時間t的線性回歸模型,并檢驗殘差序列的自相關性和異方差性。執(zhí)行程序:pro

17、cautoregdata=mianyang;modelx=t/nlag=5dwprobarchtest;run;得到結果如下:DW檢驗結果顯示,殘差序列具有顯著的正自相關性,如圖1-2所示。Durbin.-Wa.tson.Sta.tisticsOrderDWFrDW10.3613111Intercept1216433.404164.780001t1-8.38860.7953-10.56QUliFrUil35.4104.000134.9710.000144.8342.000138.1644.000145.2763.000138.4478.000146.8955.000139.3154.00015

18、0.9033.000139.3477.000154.6288.000139.3710.000157.8390.000139.6152.000159.5575.000139.6340.000159.5628.000140.4606.000160.8433.000140.6282.000163.7334.000140.6339.000166.0093.000140.7443servations72MSE4780UncondVar5316.72882LogLikelihood.-407.25362TotalR-Sq*uar0.9036SBC840.167247AIC826.50725MAE52.73

19、5066AICC827.799558MAPE2.89335488formalityTest0.0876PrChiSq0.9572VariableDFEstimateStandardErrortValueApproxFr111Intercept1213047.912744.46.0001t1-7.38651.2637-5.85.0001ARI1-1.261701203-10.490001kR210.52140.12274.250001ARCKO15182127S4.05;cards;220323602254216520242078221422922207211921192137213219551

20、78517471818190919581892191918531868199121112119199118591856192418921916196819281898185018411824182318431880196820291996193318051713172617521795171716481512133813831344138414S415971686170716401611163217751850180916531648166516271791procgplotdata=mianyang;plotx*t;symboli=joinv=starci=redcv=blackw=2;ru

21、n;procautoregdata=mianyang;modelx=t/nlag=5dwprobarchtest;modelx=t/nlag=2garch=(p=l,q=l);outputout二outp=xp;procgplotdata=out;plotx*t=2xp*t=3/ove:rlay;symbol2i=nonev=starc二black;symbol3i=joinv=nonec=redw=2;run;procprintdata=outnoobs;run;問題3,使用Auto-Regressive模型分析例5.9序列。(要求只對變量為延遲序列值進行模型擬合,作業(yè)格式參照書“例5.6續(xù)

22、”)1962-1991年德國工人季度失業(yè)率序列行數(shù)據(jù)()1.10.50.40.71.60.60.50.71.30.60.50.71.20.50.40.60.90.50.51.12.92.11.72.02.71.30.91.01.60.60.50.71.10.50.50.61.20.70.71.01.51.00.91.11.51.01.01.62.62.12.33.65.04.54.54.95.74.34.04.45.24.34.24.55.24.13.94.14.83.53.43.54.23.43.64.35.54.85.46.58.07.07.48.510.18.98.89.010.0&7&

23、8&910.4&98.99.010.2&68.48.49.9&58.68.79.88.68.4&28.87.67.57.68.17.16.96.66.86.06.26.2解:11建立數(shù)據(jù)集,繪制時序圖datashiyelv;inputx輕;t=intnxfquarter,ljanl962,d,_n_T);formattyear4.;cards;1.10.50.40.71.60.60.50.71.30.60.50.71.20.50.40.60.90.50.51.12.92.11.72.02.71.30.91.01.60.60.50.71.10.50.50.61.20.70.71.01.51.00

24、.91.11.51.01.01.62.62.12.33.65.04.54.54.95.74.34.04.45.24.34.24.55.24.13.94.14.83.53.43.54.23.43.64.35.54.85.46.58.07.07.48.510.18.98.89.010.08.78.88.910.48.9&910.28.68.48.49.98.58.69.88.6&48.28.87.67.57.68.17.16.96.66.86.06.26.2rprocgplotdata=shiyelv;plotx*t;symboli=joinv=starci=redcv=blackw=2;run;

25、1.2輸出時序圖。如圖1-1所示。圖1-1德國工人季度失業(yè)率時序圖12建立延遲因變量回歸模型執(zhí)行語句:procautoregdata=shiyelv;modelx=lagx/lagdep=lagx;run;輸出結果如下圖所示 TheAUTOREGProcedureDependentVariblexESESEBCAEAP63.788407DFE1170.54520RootNSE0.73836273.062927AIC267.504680.56825477AICC267.60812827.1498286RegressR-Squwr電0.3489TotalR-Sqaar電0.S483OrdinaryLeastSquaresEstimates # StatisticValuerrobLatelDurbinh-2.02450.0215FrhS

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論