借助幾何直觀提升核心素養(yǎng)_第1頁
借助幾何直觀提升核心素養(yǎng)_第2頁
借助幾何直觀提升核心素養(yǎng)_第3頁
借助幾何直觀提升核心素養(yǎng)_第4頁
借助幾何直觀提升核心素養(yǎng)_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、借助幾何直觀,提升核心素養(yǎng)摘要:“數(shù)”與“形”在數(shù)學研究中,是最重要的兩個研究對象。在小學數(shù) 學的教學中,如果能適時引導學生由“形”中明晰計算算理,構建數(shù)學概念,理 清數(shù)量關系,探究數(shù)學方法,既方便學生理解,又使學生積極參與到活動中,進 而積累起豐富的數(shù)學活動經(jīng)驗,發(fā)展數(shù)學素養(yǎng)。關鍵詞:幾何直觀;優(yōu)化教學過程;數(shù)學素養(yǎng)義務教育數(shù)學課程標準 (2011 年版)指出:“幾何直觀主要是指利用 圖形描述和分析問題。借助幾何直觀可以把復雜的數(shù)學問題變得簡明、形象,有 助于探索解決問題的思路,預測結果?!币虼?,教師要不斷優(yōu)化自己的教學過程, 引導學生利用幾何直觀,找出原本錯綜復雜的知識間的內在聯(lián)系,將抽象

2、知識變 得可視。數(shù)學家華羅庚曾說:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結合百 般好,隔離分家萬事休?!边@就告訴我們,“數(shù)”與“形”在數(shù)學研究中,是最 重要的兩個研究對象。它們之間存在著非常密切的關系。在小學數(shù)學教學中,適 時把幾何直觀融合到教學中,可以使學生的學習興趣獲得提高,使學生在把握數(shù) 學概念上更加深入,使學生全面地開拓思路,從而使學生大幅度提高學習效率, 發(fā)展和培養(yǎng)學生的創(chuàng)造力、思維能力和數(shù)學素養(yǎng)。小學數(shù)學課堂是師生交流的過 程,緊緊圍繞課堂教學這個主陣地,堅持把握“讓學生成為學習的主人”,體現(xiàn) 和諧的師生關系,可以培養(yǎng)學生積極心理品質,促進學生形成健全人格。一、以“形”想“數(shù)”,使

3、學生明晰計算算理培養(yǎng)學生的運算能力在小學數(shù)學中,處于重中之重的位置。怎么讓學生理解 算理,是培養(yǎng)學生運算能力的關鍵。而從目前的教學現(xiàn)狀看來,很多學生知道計 算方法,靠的都是機械訓練,會算不會說,問到為什么這樣算時,說不出所以然。 所以,在教學中,借助幾何模型,將抽象的算理具體化,形象化,讓學生以“形” 想“數(shù)”,從“形”中明“理”是計算教學的核心。借助幾何直觀,有利于幫助學生留下深刻印象,溝通口算與豎式計算之間的內在聯(lián)系,融合了算法與算理, 還培養(yǎng)了學生借助幾何直觀來深刻理解算理的習慣,也提高了學生的計算準確率例如,在教學兩位數(shù)乘兩位數(shù)的例題13X12時,如果能借助點子圖展示豎 式中算理的內涵

4、,那么不僅幫助學生把熟悉的口算清晰化,也為后續(xù)整合整數(shù)乘 法,小數(shù)乘法,分數(shù)乘法進行結構化教學做準備。在教學中,學生是分別計算 2 個 13 是幾,10 個 13 是幾,再相加。結合學生熟悉的表格顯示口算過程,再利用 點子圖把 2 個 13,和 10 個 13 表示出 2 個長方形,學生一目了然:要求 13X12, 就是求兩個長 2 寬 13 與長 10 寬 13 的長方形面積之和,這樣與豎式計算聯(lián)系在 一起,有效融合算法與算理。而在教學分數(shù)的加法時,有這么一個問題 1/2+1/4+1/8+1/16+1/32,如果學生從計算角度入手,就必須先通分,我試著引 導學生想一想各加數(shù)的含義,畫出一個正

5、方形引導學生去探究。學生通過平均分 涂色后,發(fā)現(xiàn)這個算式的和相當于 1-1/32,避免了復雜的計算,而且一目了然, 問題迎刃而解。這樣把算式用幾何直觀的方式表示出來,學生借助圖形聯(lián)想算式 看算式想圖形,更加高效地理解了算理。在數(shù)的運算教學中,教師不能只關注學生是否掌握運算技能,更要著重讓學 生明晰算理,借助幾何直觀,讓學生會算還會說“理”,這樣,不僅培養(yǎng)學生的 表達能力,而且讓算理與算法有機融合,讓學生從圖形中找到聯(lián)系,找到解決計 算難題的突破口,發(fā)展學生的運算能力,提高學生的運算素養(yǎng)。二、以“形”構“數(shù)”,使學生掌握數(shù)學概念數(shù)學概念、公理等都是經(jīng)過一番抽絲剝繭之后,提煉出來的,具有較強的邏

6、輯性與抽象性,讓學生在一段文字中,快速抓住關鍵信息,找出其中的數(shù)量關系 再通過建模來解決問題,是一個極大的考驗。這就要求學生理解并記憶各類數(shù)學 概念,把握其中飽含的意義和信息。而許多抽象的數(shù)學概念如果靠死記硬背是無 法靈活運用的,如果能適時引導學生借助幾何直觀設計數(shù)學問題情境,通過分析 可以將枯燥的數(shù)學概念情境化、形象化,轉化成學生比較容易理解的內容。那么 當學生遇到相關概念時,就能迅速厘清解題思路,能極大提升學生的數(shù)學閱讀素 養(yǎng),激發(fā)學生學習數(shù)學的信心。在此基礎上,通過挖掘深層概念的內涵與外延, 使學生進行深度學習,更深入、更透徹地理解概念。既方便學生理解,又使學生 積累了豐富的數(shù)學活動經(jīng)驗

7、,激發(fā)學生的學習興趣。例如,教學質數(shù)與合數(shù)時,我注重借助幾何直觀,以“形”構“數(shù)”, 讓抽象的數(shù)學概念形象化。首先,我為學生準備方格紙,指導學生在方格紙上按 指定的方格(邊長為 1)數(shù)量(3 個,9 個,12 個等)涂出長方形,讓學生在動 口、動手、動腦的活動中,感受具體的“形”。再從中觀察發(fā)現(xiàn)一定數(shù)量的方格 有的可以涂出多種長方形,有的卻只能涂出一種,從中引導學生發(fā)現(xiàn)方格個數(shù)與 拼成的長方形的長和寬的關系。以此培養(yǎng)學生自主探究的能力,讓學生體會以幾 何直觀做基礎,由具體到抽象,為后續(xù)質數(shù)和合數(shù)概念的抽象概括提供了大量的 感性認識,為抽象概括出質數(shù)、合數(shù)的內涵進一步奠定基礎。再適時讓學生思考

8、并把這些圖形進行整理與分類。把形象的圖形通過表格抽象出因數(shù)個數(shù)與拼成的 長方形個數(shù)之間的聯(lián)系,為后續(xù)概念的形成做準備。在學生自主學習的基礎上進 行探究,揭示新知識的內涵,讓學生經(jīng)歷操作、觀察、發(fā)現(xiàn)、概念歸納的數(shù)學化 的過程。通過舉例子進一步明確質數(shù)與合數(shù)的概念,讓學生感受到知識之間既有 區(qū)別,又有聯(lián)系。這樣通過圖形的拼組,把學生把具體圖形符號化。學生通過積 極思考得出不同的拼法,培養(yǎng)學生自主探究的能力,讓學生體會數(shù)形結合思想, 由具體到抽象,為后續(xù)質數(shù)和合數(shù)概念的抽象概括提供了大量的感性認識。讓學生在學生在自主學習的基礎上進行探究,揭示新知識的內涵,讓學生經(jīng) 歷操作、觀察、發(fā)現(xiàn)、概念歸納的數(shù)學

9、化的過程。換句話說,讓學生借助幾何直 觀理解概念這一過程,學生深刻理解了質數(shù)與合數(shù)概念的本質,學生積累了相關 活動經(jīng)驗,再遇到相關概念,學生自然心中有數(shù),能找到概念間的聯(lián)系,學生的 數(shù)學閱讀素養(yǎng)自然就獲得一定提高。三、以“形”助“數(shù)”,使學生理清數(shù)量關系在小學階段,立足教學實際以及小學生的年齡特征,多數(shù)學生的數(shù)學閱讀素 養(yǎng)較弱,主動探究數(shù)量關系的意識不強,欠缺深入思維的能力,在進行數(shù)學閱讀 時往往停留在表面,而幾何直觀正是讓學生更深入地由抽象走向直觀的一種常用 方法。非常有必要讓學生借助幾何直觀發(fā)展自己的感知層次,逐層向相對深入的 直觀理解水平發(fā)展。讓學生能從具體的數(shù)學實物過渡到幾何圖形,再到

10、抽象的數(shù) 量關系,經(jīng)歷這一過程,學生能意識到幾何直觀的作用,啟迪自己獲得一定的數(shù) 學方法和模型,學生的數(shù)學閱讀水平也能獲得一定的提高,也激發(fā)學生的主觀能 動性。例如,教學乘法分配律時,利用課件出示情境以及點子圖:芍藥每行 12 棵,牡丹每行 18 棵。學生根據(jù)這一幾何直觀表現(xiàn),能很快搜集到相應的數(shù)學信 息。再讓學生提出相關的數(shù)學問題:一共種多少棵芍藥和牡丹?芍藥和牡丹 的種植面積一共是多少?并引出兩種算法。這時,學生很容易將離散的物品與土 地面積這兩種情境合二為一,為后續(xù)概括出乘法分配律打下基礎。解決完這一問 題后,讓學生觀察比較兩組算式,順勢猜測規(guī)律,再驗證規(guī)律。總結規(guī)律后,在 此基礎上,再

11、次利用幾何直觀,把情境圖中的實物隱去,搖身一變成為一個大長 方形(由長a,寬c以及長b,寬c的兩個小長方形組成),讓學生知道也可以用 小數(shù)、分數(shù)等表示。它有助于學生加深對乘法分配律的理解,學生在腦海里建立 了這個數(shù)學模型,用起乘法分配律也比較得心應手,避免與乘法結合律混淆。同 時,也為學生五年級學習用字母表示數(shù)做一個鋪墊。學生的數(shù)學閱讀素養(yǎng)不止是對數(shù)字的閱讀,還有對圖文,以及各部分信息之 間關系的閱讀。讓學生充分經(jīng)歷借圖形想乘法分配律這一過程,學生不僅知道怎 么做,還知道為什么這么做。知道了乘法分配律的本質,為后續(xù)靈活運用乘法分 配律解決問題,創(chuàng)造了條件。四、以“形”輔“數(shù)”,使學生探究數(shù)學方

12、法借助幾何直觀并不是一蹴而就的,要從“娃娃抓起”,在整個小學階段逐步 構造幾何直觀系列。從一年級起,就可以發(fā)揮幾何直觀的優(yōu)勢,適時引導學生畫 圖表示數(shù),說明計算結果等,等越高年級就可以拔高要求,引進線段圖,學習韋 恩圖,利用面積圖等。讓學生主動借助幾何直觀的優(yōu)勢,邊進行數(shù)學閱讀邊畫圖 有助于理解題意,“把復雜問題變得簡明、形象”,從一堆文字中,尋根朔源, 找到問題癥結點,就能少走彎路,不僅培養(yǎng)了數(shù)學閱讀素養(yǎng),活躍學習數(shù)學的思 維。例如,教學組合圖形的面積之后,有這么一類數(shù)學問題時:“會場原來 每排 20座,有 15 排,擴建后每排增加 5 座,增加 3 排。擴建后共增加幾個座 位?”常有學生以

13、為5X3就是增加的座位數(shù),學生就是看到“增加”二字,只 憑空想象,忽略了怎么增加,為什么是錯的,解釋起來頗費口舌。而學生自發(fā)想 到的算法是增加后的座位數(shù)減去原來座位數(shù):(20+5)X(15+3) -20X 15。乍 看這是一道代數(shù)的解決問題,但是如果用一個圖(長 20,寬 18的長方形,通過 加上輔助線變成了一個長 25,寬 18的長方形)來表示。學生如果能主動去畫出 示意圖,看圖就更加一目了然,這種直觀的圖示讓學生利用組合圖形面積的計算 知識與技能,促進了學習與應用的遷移,得出另外的解決方法如下,而且不容易 出錯,找出算法:5X(15+3)+20X3 ;倉(20+5)X3+15X5,問題也將迎刃 而解。這就說明,在平時的教學中,作為教師,要有引導學生借助幾何直觀的意識 讓學生在學習的過程中,不斷積累、感悟幾何直觀帶來的作用,化被動為主動, 外化促進內化,不斷提高自己的數(shù)學閱讀素養(yǎng)??傊?,借助幾何直觀的方式,構建幾何直觀體系,幫助學生更好地理解概念 定律等內涵,拓展思維空間,優(yōu)化教學過程,讓學生感受到數(shù)學學習的樂趣,從 而促進學習數(shù)學的新的生長點,幫助學生生成主動建構數(shù)學模型的意識,培養(yǎng)其 積極心理品質,啟迪學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論