




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Sampling DistributionsChapter 7Sampling Chapter 7ObjectivesIn this chapter, you learn:The concept of the sampling distributionTo compute probabilities related to the sample mean and the sample proportionThe importance of the Central Limit TheoremObjectivesIn this chapter, youSampling DistributionsA
2、sampling distribution is a distribution of all of the possible values of a sample statistic for a given sample size selected from a population.For example, suppose you sample 50 students from your college regarding their mean GPA. If you obtained many different samples of size 50, you will compute a
3、 different mean for each sample. We are interested in the distribution of all potential mean GPAs we might calculate for any sample of 50 students.DCOVASampling DistributionsA sampliDeveloping a Sampling DistributionAssume there is a population Population size N=4Random variable, X,is age of individ
4、ualsValues of X: 18, 20,22, 24 (years)ABCDDCOVADeveloping a Sampling Distribu.3.2.1 0 18 20 22 24 A B C DUniform DistributionP(x)x(continued)Summary Measures for the Population Distribution:Developing a Sampling DistributionDCOVA.3.2.1 0 18 20 16 possible samples (sampling with replacement)Now consi
5、der all possible samples of size n=2(continued)Developing a Sampling Distribution16 Sample Means1stObs2nd Observation182022241818,1818,2018,2218,242020,1820,2020,2220,242222,1822,2022,2222,242424,1824,2024,2224,24DCOVA16 possible samples (sampling Sampling Distribution of All Sample Means18 19 20 21
6、 22 23 240 .1 .2 .3 P(X) XSample Means Distribution16 Sample Means_Developing a Sampling Distribution(continued)(no longer uniform)_DCOVASampling Distribution of All SSummary Measures of this Sampling Distribution:Developing A Sampling Distribution(continued)DCOVANote:Here we divide by 16 because th
7、ere are 16different samples of size 2.Summary Measures of this SamplComparing the Population Distributionto the Sample Means Distribution18 19 20 21 22 23 240 .1 .2 .3 P(X) X 18 20 22 24 A B C D0 .1 .2 .3 PopulationN = 4P(X) X_Sample Means Distributionn = 2_DCOVAComparing the Population DistrSample
8、Mean Sampling Distribution:Standard Error of the MeanDifferent samples of the same size from the same population will yield different sample meansA measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:(This assumes that sampling is with replacement
9、or sampling is without replacement from an infinite population)Note that the standard error of the mean decreases as the sample size increasesDCOVASample Mean Sampling DistributSample Mean Sampling Distribution:If the Population is NormalIf a population is normal with mean and standard deviation , t
10、he sampling distribution of is also normally distributed with andDCOVASample Mean Sampling DistributZ-value for Sampling Distributionof the MeanZ-value for the sampling distribution of :where:= sample mean= population mean= population standard deviation n = sample sizeDCOVAZ-value for Sampling Distr
11、ibutNormal Population DistributionNormal Sampling Distribution (has the same mean)Sampling Distribution Properties (i.e. is unbiased )DCOVANormal Population DistributionSampling Distribution Properties As n increases, decreasesLarger sample sizeSmaller sample size(continued)DCOVASampling Distributio
12、n PropertiDetermining An Interval Including A Fixed Proportion of the Sample MeansFind a symmetrically distributed interval around that will include 95% of the sample means when = 368, = 15, and n = 25.Since the interval contains 95% of the sample means 5% of the sample means will be outside the int
13、ervalSince the interval is symmetric 2.5% will be above the upper limit and 2.5% will be below the lower limit.From the standardized normal table, the Z score with 2.5% (0.0250) below it is -1.96 and the Z score with 2.5% (0.0250) above it is 1.96.DCOVADetermining An Interval IncludDetermining An In
14、terval Including A Fixed Proportion of the Sample MeansCalculating the lower limit of the intervalCalculating the upper limit of the interval95% of all sample means of sample size 25 are between 362.12 and 373.88(continued)DCOVADetermining An Interval IncludSample Mean Sampling Distribution:If the P
15、opulation is not NormalWe can apply the Central Limit Theorem:Even if the population is not normal,sample means from the population will be approximately normal as long as the sample size is large enough.Properties of the sampling distribution: andDCOVASample Mean Sampling DistributnCentral Limit Th
16、eoremAs the sample size gets large enough the sampling distribution of the sample mean becomes almost normal regardless of shape of populationDCOVAnCentral Limit TheoremAs the Population DistributionSampling Distribution (becomes normal as n increases)Central TendencyVariationLarger sample sizeSmall
17、er sample sizeSample Mean Sampling Distribution:If the Population is not Normal(continued)Sampling distribution properties:DCOVAPopulation DistributionSamplinHow Large is Large Enough?For most distributions, n 30 will give a sampling distribution that is nearly normalFor fairly symmetric distributio
18、ns, n 15For a normal population distribution, the sampling distribution of the mean is always normally distributedDCOVAHow Large is Large Enough?For ExampleSuppose a population has mean = 8 and standard deviation = 3. Suppose a random sample of size n = 36 is selected. What is the probability that t
19、he sample mean is between 7.8 and 8.2?DCOVAExampleSuppose a population haExampleSolution:Even if the population is not normally distributed, the central limit theorem can be used (n 30) so the sampling distribution of is approximately normal with mean = 8 and standard deviation (continued)DCOVAExamp
20、leSolution:(continued)DCOExample Solution (continued):(continued)Z7.8 8.2-0.4 0.4Sampling DistributionStandard Normal DistributionPopulation Distribution?SampleStandardizeXDCOVAExample Solution (continued)Population Proportions = the proportion of the population having some characteristicSample prop
21、ortion (p) provides an estimate of :0 p 1p is approximately distributed as a normal distribution when n is large(assuming sampling with replacement from a finite population or without replacement from an infinite population)DCOVAPopulation Proportions = tSampling Distribution of pApproximated by ano
22、rmal distribution if: where and(where = population proportion)Sampling DistributionP( ps).3.2.1 0 0 . 2 .4 .6 8 1pDCOVASampling Distribution of pApprZ-Value for ProportionsStandardize p to a Z value with the formula:DCOVAZ-Value for ProportionsStandarExampleIf the true proportion of voters who support Proposition A is = 0.4, what is the probability that a sample of size 200 yields a s
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療用品行業(yè)市場(chǎng)準(zhǔn)入政策考核試卷
- 光纜行業(yè)供應(yīng)鏈管理考核試卷
- 成人高等教育材料力學(xué)與工程應(yīng)用考核試卷
- 壓力敏感合成材料制造技術(shù)與應(yīng)用考核試卷
- 機(jī)織服裝國(guó)際貿(mào)易法規(guī)與慣例考核試卷
- 數(shù)字內(nèi)容版權(quán)監(jiān)測(cè)與維權(quán)策略考核試卷
- 青島沃爾沃購(gòu)車合同范本
- 中介渠道合作合同范本
- 藝人標(biāo)準(zhǔn)解約合同范本
- 酒店訂制家具合同范本
- 云南省2023年秋季學(xué)期期末普通高中學(xué)業(yè)水平考試信息技術(shù)(含答案解析)
- 氣血津液(中醫(yī)理論)
- 2024年2型糖尿病中醫(yī)防治指南解讀課件
- 2024-2030年中國(guó)螺旋藻行業(yè)市場(chǎng)發(fā)展分析及發(fā)展趨勢(shì)與投資研究報(bào)告
- 2024年遼寧省中考物理試題
- 2024年湖南電氣職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)含答案
- MOOC 中外鐵路文化之旅-華東交通大學(xué) 中國(guó)大學(xué)慕課答案
- CJJ 82-2012 園林綠化工程施工及驗(yàn)收規(guī)范
- 數(shù)據(jù)庫(kù)原理及應(yīng)用(第3版)
- 預(yù)防流感健康知識(shí)講座總結(jié)
- 2023年4月自考00808商法試題及答案含解析
評(píng)論
0/150
提交評(píng)論