




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2023學年九上數(shù)學期末模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1美是一種感覺,當人體下半身長與身高的比值越接近0.618時,越給人一種美感某女模特身高165cm,下半身長x(cm)與身高l(cm)的比值是0.1為盡可能達到好的效果
2、,她應(yīng)穿的高跟鞋的高度大約為()A4cmB6cmC8cmD10cm2如圖,點A,B,C在O上,A=36,C=28,則B=()A100B72C64D363方程x2+4x+40的根的情況是()A有兩個不相等的實數(shù)根B有兩個相等的實數(shù)根C有一個實數(shù)根D沒有實數(shù)根4如圖,已知拋物線y1x11x,直線y11xb相交于A,B兩點,其中點A的橫坐標為1當x任取一值時,x對應(yīng)的函數(shù)值分別為y1,y1,取m(|y1y1|y1y1)則( )A當x1時,my1Bm隨x的增大而減小C當m1時,x0Dm15如圖是二次函數(shù)yax2+bx+c(a1)的圖象的一部分,給出下列命題:a+b+c1;b2a;方程ax2+bx+c1
3、的兩根分別為3和1;當x1時,y1其中正確的命題是()ABCD6如圖,周長為28的菱形中,對角線、交于點,為邊中點,的長等于( )A3.5B4C7D147如圖,從一塊直徑為的圓形鐵皮上剪出一個圓心角為90的扇形.則此扇形的面積為( )ABCD8如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a0)經(jīng)過ABC區(qū)域(包括邊界),則a的取值范圍是()A或B或C或D9把二次函數(shù)配方后得( )ABCD10將二次函數(shù)y2x24x+5的右邊進行配方,正確的結(jié)果是()Ay2(x1)23By2(x2)23Cy2(x1)2+3Dy2(x2)2+311如圖,點O是五邊形ABC
4、DE和五邊形A1B1C1D1E1的位似中心,若OA:OA11:3,則五邊形ABCDE和五邊形A1B1C1D1E1的面積比是()A1:2B1:3C1:4D1:912若,則等于( )ABCD二、填空題(每題4分,共24分)13數(shù)學學習應(yīng)經(jīng)歷“觀察、實驗、猜想、證明”等過程.下表是幾位數(shù)學家“拋擲硬幣”的實驗數(shù)據(jù):實驗者棣莫弗蒲豐德摩根費勒皮爾遜羅曼諾夫斯基擲幣次數(shù)204840406140100003600080640出現(xiàn)“正面朝上”的次數(shù)10612048310949791803139699頻率0.5180.5070.5060.4980.5010.492請根據(jù)以上實驗數(shù)據(jù),估計硬幣出現(xiàn)“正面朝上”的
5、概率為_(精確到0.1)14隨即擲一枚均勻的硬幣三次次,三次正面朝上的概率是_15分別寫有數(shù)字0,2,4,-5的五張卡片,除數(shù)字不同外其它均相同,從中任抽一張,那么抽到非負數(shù)的概率是_16在實數(shù)范圍內(nèi)定義一種運算“”,其規(guī)則為aba2b,根據(jù)這個規(guī)則,方程(x+2)90的解為_17如圖,某水庫大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30,迎水坡的坡度為12,那么壩底的長度等于_米(結(jié)果保留根號)18如圖,每個小正方形的邊長都為1,點A、B、C都在小正方形的頂點上,則ABC的正切值為_三、解答題(共78分)19(8分)周末,小馬和小聰想用所學的數(shù)學知識測量圖書館前小河的寬,測量
6、時,他們選擇河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.已知:CBAD,EDAD,測得BC=1m,DE=1.35m,BD=7m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB20(8分)如圖,在四邊形ABCD中,ADBC,ABBD于點B已知A = 45,C= 60,求AD的長21(8分)矩形ABCD中,AB2,AD3,O為邊AD上一點,以O(shè)為圓心,OA為半徑r作O,過點B作O的切線BF,F(xiàn)為切點(1)如圖1,當O經(jīng)過點C時,求O截邊BC所得弦MC的長度;(2)如圖
7、2,切線BF與邊AD相交于點E,當FEFO時,求r的值;(3)如圖3,當O與邊CD相切時,切線BF與邊CD相交于點H,設(shè)BCH、四邊形HFOD、四邊形FOAB的面積分別為S1、S2、S3,求的值22(10分)計算(1)2sin30-tan60+tan45;(2)tan245+sin230-3cos23023(10分)如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2 m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)a(x6)2h.已知球網(wǎng)與O點的水平距離為9 m,高度為2.43 m,球場的邊界距O點的水平距離為18 m.(1)當h2.6時,求y與x的關(guān)系式
8、(不要求寫出自變量x的取值范圍)(2)當h2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由24(10分)解方程:(1)x28x60(2)x 12 3x 1 025(12分)問題提出(1)如圖,在中,求的面積問題探究(2)如圖,半圓的直徑,是半圓的中點,點在上,且,點是上的動點,試求的最小值問題解決(3)如圖,扇形的半徑為在選點,在邊上選點,在邊上選點,求的長度的最小值262019年12月17日,我國第一艘國產(chǎn)航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測試中,航行至處,觀測指揮塔位于南偏西方向,在沿正南方向以30海里/小時的速度勻速航行2小時后,到達處,再觀測指揮塔位于南偏西
9、方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結(jié)果保留根號)參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)比例關(guān)系即可求解.【詳解】模特身高165cm,下半身長x(cm)與身高l(cm)的比值是0.1,0.1,解得:x99,設(shè)需要穿的高跟鞋是ycm,則根據(jù)黃金分割的定義得:0.612,解得:y2故選:C【點睛】此題主要考查比例的性質(zhì),解題的關(guān)鍵是熟知比例關(guān)系的定義.2、C【詳解】試題分析:設(shè)AC和OB交于點D,根據(jù)同弧所對的圓心角的度數(shù)等于圓周角度數(shù)2倍可得:O=2A=72,根據(jù)C=28可得:ODC=80,則ADB=80,則B=180-A-ADB=180-3
10、6-80=64,故本題選C3、B【分析】判斷上述方程的根的情況,只要看根的判別式b24ac的值的符號就可以了【詳解】解:b24ac16160方程有兩個相等的實數(shù)根故選:B【點睛】本題考查了一元二次方程根的判別式的應(yīng)用總結(jié):一元二次方程根的情況與判別式的關(guān)系:(1)0方程有兩個不相等的實數(shù)根;(2)=0方程有兩個相等的實數(shù)根;(3)0方程沒有實數(shù)根4、D【分析】將點的橫坐標代入,求得,將,代入求得,然后將與聯(lián)立求得點的坐標,然后根據(jù)函數(shù)圖象化簡絕對值,最后根據(jù)函數(shù)的性質(zhì),可得函數(shù)的增減性以及的范圍【詳解】將代入,得,點的坐標為將,代入,得,將與聯(lián)立,解得:,或,點的坐標為當x1時,m(|y1y1
11、|y1y1)= (y1y1y1y1)= y1,故錯誤;當時,當時,當時,當x1時,m隨x的增大而減小,故錯誤;令,代入,求得:或(舍去),令,代入,求得:,當m1時,x0或,故錯誤m=,畫出圖像如圖,D正確故選【點睛】本題主要考查的是二次函數(shù)與一次函數(shù)的綜合,根據(jù)函數(shù)圖象比較出與的大小關(guān)系,從而得到關(guān)于x的函數(shù)關(guān)系式,是解題的關(guān)鍵5、B【分析】利用x=1時,y=1可對進行判斷;利用對稱軸方程可對進行判斷;利用對稱性確定拋物線與x軸的另一個交點坐標為(-3,1),則根據(jù)拋物線與x軸的交點問題可對進行判斷;利用拋物線在x軸下方對應(yīng)的自變量的范圍可對進行判斷【詳解】x1時,y1,a+b+c1,所以正
12、確;拋物線的對稱軸為直線x1,b2a,所以錯誤;拋物線與x軸的一個交點坐標為(1,1),而拋物線的對稱軸為直線x1,拋物線與x軸的另一個交點坐標為(3,1),方程ax2+bx+c1的兩根分別為3和1,所以正確;當3x1時,y1,所以錯誤故選:B【點睛】本題考查的是拋物線的性質(zhì)及對稱性,掌握二次函數(shù)的性質(zhì)及其與一元二次方程的關(guān)系是關(guān)鍵6、A【解析】根據(jù)菱形的周長求出其邊長,再根據(jù)菱形的性質(zhì)得出對角線互相垂直,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】四邊形是菱形,周長為28AB=7,ACBDOH= 故選:A【點睛】本題考查的是菱形的性質(zhì)及直角三角形斜邊上的中線等于斜邊的一半,
13、熟練掌握菱形的性質(zhì)是關(guān)鍵.7、A【解析】分析:連接AC,根據(jù)圓周角定理得出AC為圓的直徑,解直角三角形求出AB,根據(jù)扇形面積公式求出即可詳解:連接AC從一塊直徑為2m的圓形鐵皮上剪出一個同心角為90的扇形,即ABC=90,AC為直徑,即AC=2m,AB=BC AB2+BC2=22,AB=BC=m,陰影部分的面積是=(m2) 故選A點睛:本題考查了圓周角定理和扇形的面積計算,能熟記扇形的面積公式是解答此題的關(guān)鍵8、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最大值拋物線經(jīng)過ABC區(qū)域(包括邊界),的取值范圍是: 當時,拋物線經(jīng)過點時,拋物線的開口
14、最小,取得最小值拋物線經(jīng)過ABC區(qū)域(包括邊界),的取值范圍是: 故選B.點睛:二次函數(shù) 二次項系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.9、B【分析】運用配方法把一般式化為頂點式即可【詳解】解:=故選:B【點睛】本題考查的是二次函數(shù)的三種形式,正確運用配方法把一般式化為頂點式是解題的關(guān)鍵10、C【解析】先提出二次項系數(shù),再加上一次項系數(shù)一半的平方,即得出頂點式的形式【詳解】解:提出二次項系數(shù)得,y2(x22x)+5,配方得,y2(x22x+1)+52,即y2(x1)2+1故選:C【點睛】本題考查二次函數(shù)的三種形式,一般式:y=ax2bxc,頂點式:y
15、=a(x-h)2+k;兩根式:y= 11、D【分析】由點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比為1:3,根據(jù)相似圖形的面積比等于相似比的平方,即可求得答案【詳解】點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA11:3,五邊形ABCDE和五邊形A1B1C1D1E1的位似比為1:3,五邊形ABCDE和五邊形A1B1C1D1E1的面積比是1:1故選:D【點睛】此題考查了位似圖形的性質(zhì)此題比較簡單,注意相似圖形的周長的比等于相似比,相似圖形的面積比等于相似比的平方12、B【分析】首先根據(jù)已知等式得出,然后代入所求式子,即可
16、得解.【詳解】故答案為B.【點睛】此題主要考查利用已知代數(shù)式化為含有同一未知數(shù)的式子,即可解題.二、填空題(每題4分,共24分)13、0.1【分析】由于表中硬幣出現(xiàn)“正面朝上”的頻率在0.1左右波動,則根據(jù)頻率估計概率可得到硬幣出現(xiàn)“正面朝上”的概率為0.1【詳解】解:因為表中硬幣出現(xiàn)“正面朝上”的頻率在0.1左右波動,所以估計硬幣出現(xiàn)“正面朝上”的概率為0.1故答案為0.1【點睛】本題考查了利用頻率估計概率,隨實驗次數(shù)的增多,值越來越精確14、【分析】需要三步完成,所以采用樹狀圖法比較簡單,根據(jù)樹狀圖可以求得所有等可能的結(jié)果與出現(xiàn)三次正面朝上的情況,再根據(jù)概率公式求解即可【詳解】畫樹狀圖得:
17、一共有共8種等可能的結(jié)果;出現(xiàn)3次正面朝上的有1種情況出現(xiàn)3次正面朝上的概率是故答案為點評:此題考查了樹狀圖法概率注意樹狀圖法可以不重不漏地表示出所有等可能的結(jié)果用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比15、【分析】根據(jù)概率的求解公式,首先弄清非負數(shù)卡片有3張,共有5張卡片,即可算出概率.【詳解】由題意,得數(shù)字是非負數(shù)的卡片有0,2,共3張,則抽到非負數(shù)的概率是,故答案為:.【點睛】此題主要考查概率的求解,熟練掌握,即可解題.16、x11,x21【分析】先閱讀題目,根據(jù)新運算得出(x+2)290,移項后開方,即可求出方程的解【詳解】解:(x+2)90,(x+2)290,(x+2)29,x
18、+23,x11,x21,故答案為x11,x21【點睛】此題主要考查一元二次方程的求解,解題的關(guān)鍵是根據(jù)題意列方程.17、【分析】過梯形上底的兩個頂點向下底引垂線、,得到兩個直角三角形和一個矩形,分別解、求得線段、的長,然后與相加即可求得的長【詳解】如圖,作,垂足分別為點E,F(xiàn),則四邊形是矩形由題意得,米,米,斜坡的坡度為12,在中,米在RtDCF中,斜坡的坡度為12,米,(米)壩底的長度等于米故答案為【點睛】此題考查了解直角三角形的應(yīng)用坡度坡角問題,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形和矩形,注意理解坡度與坡角的定義18、1【解析】根據(jù)勾股定理求出ABC的各個邊的長度,根據(jù)勾股定理的逆定理
19、求出ACB90,再解直角三角形求出即可【詳解】如圖:長方形AEFM,連接AC,由勾股定理得:AB232+1210,BC222+125,AC222+125AC2+BC2AB2,ACBC,即ACB90,ABC45tanABC=1【點睛】本題考查了解直角三角形和勾股定理及逆定理等知識點,能求出ACB90是解此題的關(guān)鍵.三、解答題(共78分)19、20米【分析】先利用CBAD,EDAD得到CBA=EDA=90,由此證明ABCADE,得到,將數(shù)值代入即可求得AB.【詳解】CBAD,EDAD,CBA=EDA=90,CAB=EAD,ABCADE,AD=AB+BD,BD=7,BC=1,DE=1.35,AB=2
20、0,即河寬為20米.【點睛】此題考查相似三角形的實際應(yīng)用,解決河寬問題.20、【分析】過點D作DEBC于E,在RtCDE中,C = 60,則可求出DE,由已知可推出DBE =ADB = 45,根據(jù)直解三角形的邊角關(guān)系依次求出BD,AD即可.【詳解】過點D作DEBC于E 在RtCDE中,C = 60, , ABBD,A = 45,ADB = 45.ADBC,DBE =ADB = 45 在RtDBE中,DEB = 90, , 又 在RtABD中,ABD= 90,A = 45,【點睛】本題考查了解直角三角形的知識,正確作出輔助線是解題的關(guān)鍵.21、(1)CM;(2)r22;(3)1【分析】(1)如圖
21、1中,連接OM,OC,作OHBC于H首先證明CM2OD,設(shè)AOCOr,在RtCDO中,根據(jù)OC2CD2+OD2,構(gòu)建方程求出r即可解決問題(2)證明OEF,ABE都是等腰直角三角形,設(shè)OAOFEFr,則OEr,根據(jù)AE2,構(gòu)建方程即可解決問題(3)分別求出S1、S2、S3的值即可解決問題【詳解】解:(1)如圖1中,連接OM,OC,作OHBC于HOHCM,MHCH,OHC90,四邊形ABCD是矩形,DHCD90,四邊形CDOH是矩形,CHOD,CM2OD,設(shè)AOCOr,在RtCDO中,OC2CD2+OD2,r222+(3r)2,r,OD3r,CM2OD(2)如圖2中,BE是O的切線,OFBE,E
22、FFO,F(xiàn)EO45,BAE90,ABEAEB45,ABBE2,設(shè)OAOFEFr,則OEr,r+r2,r22(3)如圖3中,由題意:直線AB,直線BH,直線CD都是O的切線,BABF2,F(xiàn)HHD,設(shè)FHHDx,在RtBCH中,BH2BC2+CH2,(2+x)232+(2x)2,x,CH,S1S2,S33,【點睛】本題屬于圓綜合題,考查了切線的判定和性質(zhì),勾股定理,垂徑定理,矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,學會利用參數(shù)構(gòu)建方程解決問題22、(1)2-;(2)-【解析】(1)直接利用特殊角的三角函數(shù)值代入即可求出答案; (2)直接利用特殊角的三角函數(shù)值
23、代入即可求出答案【詳解】解:(1)2sin30-tan60+tan45=2-+1=2-;(2)tan245+sin230-3cos230=12+()2-3()2=+-= -故答案為:(1)2-;(2)-【點睛】本題考查特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題的關(guān)鍵23、(1)y(x6)22.6;(2)球能過網(wǎng);球會出界【解析】解:(1)h2.6,球從O點正上方2 m的A處發(fā)出,ya(x6)2h過(0,2)點,2a(06)22.6,解得:a,所以y與x的關(guān)系式為:y(x6)22.6.(2)當x9時,y(x6)22.62.452.43,所以球能過網(wǎng);當y0時,(x6)22.60,解得:x16218,x262(舍去),所以會出界24、(1)x1=,x2=-(2) x1=1,x2=1【分析】(1)根據(jù)配方法即可求解;(2)根據(jù)因式分解法即可求解【詳解】(1)x28x60 x28x1610(x-1)210 x-1=x1=,x2=-(2)x 12 3x 1 0 x 1x 1-3x 1x-1x-1=0或x-1=0解得x1=1,x2=1【點睛】此題主要考查一元二次方程的求解,解題的關(guān)鍵是熟知其解法的運用25、(1)12;(2);(3)【分析】(1)如圖1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 攝影器材品牌區(qū)域代理權(quán)合同
- 材料疲勞損傷累積分析模型合同
- 邊疆地區(qū)古代神話與服飾關(guān)系考古合同
- 保險業(yè)務(wù)流程重組合同
- 主題餐廳廚房承包及特色氛圍營造合同
- 拆遷工程后期維護承包合同
- 測量工作總結(jié)200字
- 光伏電站安全工作總結(jié)及計劃
- 美術(shù)6分鐘技能展示課件
- 防火安全重于泰山
- 游戲策劃師招聘筆試題與參考答案2025年
- 安全、環(huán)境、職業(yè)健康安全目標、指標及管理方案
- 課件:《中華民族共同體概論》第一講 中華民族共同體基礎(chǔ)理論
- 2024年檔案知識競賽考試題庫300題(含答案)
- 中國人民抗日戰(zhàn)爭勝利紀念日紀念暨世界反法西斯戰(zhàn)爭勝利課件
- 殯葬禮儀策劃方案
- 行政效能提升路徑研究
- 2021部編版語文必修下冊理解性默寫匯編 (打?。?/a>
- (完整版)無菌醫(yī)療器械耗材生產(chǎn)企業(yè)體系文件-質(zhì)量手冊模板
- JBT 3300-2024 平衡重式叉車 整機試驗方法(正式版)
- 鉆井及井下作業(yè)井噴事故典型案例
評論
0/150
提交評論